1 |
Lin Congmei, Gong Feiyan, Qian Wen, et al. Tunable interfacial interaction intensity: Construction of a bio⁃inspired interface between polydopamine and energetic crystals[J]. Composites Science and Technology, 2021, 211: 108816.
|
2 |
Deng Chao, Liu Huihui, Cui Yutao, et al. Low⁃temperature preparation of novel fluoro⁃fluoro semi⁃interpenetrating polymer networks as a strong, tough and safe polymer binder for PBX[J]. Polymer, 2023, 264: 125562.
|
3 |
王苏炜, 肖磊, 胡玉冰, 等. 纳米单质含能材料制备及其应用现状[J]. 火炸药学报, 2021, 44(6): 705⁃734.
|
|
WANG S W, XIAO L, HU Y B, et al. A review on the preparation and application of nano⁃energetic materials[J]. Chinese Journal of Explosives & Propellants, 2021, 44(6): 705⁃734.
|
4 |
张蒙蒙, 罗一鸣, 王红星, 等. 聚合物基与传统熔铸载体炸药的工艺性差异研究[J]. 爆破器材, 2021, 50(3): 29⁃34.
|
|
ZHANG M M, LUO Y M, WANG H X, et al. Study on technological difference between polymer based explosive and traditional melt⁃cast carrier explosive[J]. Explosive Materials, 2021, 50(3): 29⁃34.
|
5 |
严启龙, 聂福德, 杨志剑. 高聚物粘结炸药及其性能[M]. 北京: 国防工业出版社, 2020.
|
6 |
Zong Huzeng, Cong Qilun, Zhang Tengyue, et al. Simulation of printer nozzle for 3D printing TNT/HMX based melt⁃cast explosive [J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5/6): 3 105⁃3 117.
|
7 |
蒋浩龙, 王晓峰, 陈松, 等. 炸药混合技术的发展和应用[J]. 飞航导弹, 2014, (12): 74⁃78.
|
|
JIANG H L, WANG X F, CHEN S, et al. Development and application of explosive mixing technology [J]. Aerodynamic Missile, 2014(12): 74⁃78.
|
8 |
王春光, 魏敏, 刘学柱, 等. DNAN 基高威力钝感熔铸炸药装药工艺应用[J]. 兵工自动化, 2013, 32(1): 42⁃45.
|
|
WANG C G, WEI M, LIU X Z, et al. Charging technology application of high power insensitive melt⁃pour explosive based on DNAN [J]. Ordnance Industry Automation, 2013, 32(1): 42⁃45, 51.
|
9 |
金大勇, 王亲会, 牛国涛, 等. 一种DNAN基熔铸炸药铸装工艺安全性分析[J]. 科学技术与工程, 2015, (8): 176⁃181.
|
|
JIN D Y, WANG Q H, NIU G T, et al. Analysis of process safety on casting a DNAN based melt⁃cast explosive [J]. Science Technology and Engineering, 2015, 15(8): 176⁃181.
|
10 |
马秀清, 金律, 张亚军, 等. 含能材料连续挤出技术的应用现状及发展[J]. 塑料, 2018, 47(5): 8⁃11.
|
|
MA X Q, JIN L, ZHANG Y J, et al. Application status and development of continuous extrusion technology for energetic materials [J]. Plastics, 2018, 47(5): 8⁃11.
|
11 |
Wang Suwei, Song Xiuduo, Wu Zongkai, et al. Simulation of the plasticizing behavior of composite modified double⁃base (CMDB) propellant in grooved calendar based on adaptive grid technology [J]. Defence Technology, 2021, 17(6): 1 954⁃1 966.
|
12 |
Zhou Ke, He Zhongqi, Yin Shupan, et al. Numerical simulation for exploring the effect of viscosity on single⁃screw extrusion process of propellant [J]. Procedia Engineering, 2014, 84: 933⁃939.
|
13 |
Francisco Chinesta, Gilles Ausias. Rheology of non⁃spherical particle suspensions [M]. UK: Elsevier, 2016.
|
14 |
李雪珍, 薛平, 宋秀铎, 等. 含能材料加工过程模拟仿真的研究进展[J]. 塑料工业, 2021, 49(1): 1⁃6.
|
|
LI X Z, XUE P, SONG X D, et al. Research progress in numerical simulation of energetic material processing [J]. China Plastics Industry, 2021, 49(1): 1⁃6, 12.
|
15 |
Pg Wright. The variation of viscosity with temperature [J]. Physics Education, 1977, 12(5): 323.
|
16 |
杨可喜. 端羟基聚丁二烯预聚物的流动特性研究[J]. 推进技术, 1998, 19(5): 103⁃105.
|
|
YANG K X. Study on characteristics of flow viscosity of HTPB prepolymer[J]. Journal of Propulsion Technology, 1 998(5): 104⁃106.
|
17 |
Karwe Mukund V, Yogesh Jaluria. Numerical simulation of fluid flow and heat transfer in a single⁃screw extruder for non⁃Newtonian fluids [J]. Numerical Heat Transfer, 1990, 17(2): 167⁃190.
|
18 |
Ganesh Dombe, Mehilal D, Chetan Bhongale, et al. Application of twin screw extrusion for continuous processing of energetic materials[J]. Central European Journal of Energetic Materials, 2015, 12(3): 507⁃522.
|
19 |
从海燕, 杨峰, 林广义, 等. 低剪切螺杆挤出性能的研究[J]. 橡塑技术与装备, 2002, 28(11): 1⁃4.
|
|
CONG H Y, YANG F, LIN G Y, et al. Study on extrusion properties of low shearing screw [J]. China Rubber/Plastics Technology and Equipment, 2002, 28(11): 1⁃4.
|
20 |
吴家荣, 李红智, 杨玉, 等. 超临界二氧化碳动力循环中印刷电路板换热器芯体机械应力和热应力耦合分析[J]. 中国电机工程学报, 2022, 42(2): 640⁃650.
|
|
WU J R, LI H Z, YANG Y, et al. Coupling analysis of mechanical stress and thermal stress of printed circuit heat exchanger core in supercritical carbon dioxide power cycle[J]. Proceedings of the CSEE, 2022, 42(2): 640⁃650.
|