
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (6): 139-144.DOI: 10.19491/j.issn.1001-9278.2024.06.021
• 综述 • 上一篇
曹帅1(), 姜涛2, 刘雄3, 王瑛2, 李文戈2, 吴新锋1(
)
收稿日期:
2023-09-15
出版日期:
2024-06-26
发布日期:
2024-06-20
通讯作者:
吴新锋(1982-),男,教授,从事复合材料的研究,xfwu@sspu.edu.cn作者简介:
曹帅,男,在读研究生,从事复合材料的研究,3027282283@qq.com基金资助:
CAO Shuai1(), JIANG Tao2, LIU Xiong3, WANG Ying2, LI Wenge2, WU Xinfeng1(
)
Received:
2023-09-15
Online:
2024-06-26
Published:
2024-06-20
Contact:
WU Xinfeng
E-mail:3027282283@qq.com;xfwu@sspu.edu.cn
摘要:
介绍了MXene导热复合材料的传热机理,综述了MXene导热复合材料的各种制备方法,主要包括真空辅助过滤法、冻干取向法、溶液共混法、自组装法和多层铸造法等,分析了不同方法制备MXene导热复合材料的特性,最后,指出了MXene导热复合材料面对的挑战,并对未来的发展方向进行了展望。
中图分类号:
曹帅, 姜涛, 刘雄, 王瑛, 李文戈, 吴新锋. MXene导热复合材料的制备研究进展[J]. 中国塑料, 2024, 38(6): 139-144.
CAO Shuai, JIANG Tao, LIU Xiong, WANG Ying, LI Wenge, WU Xinfeng. Research progress in preparation of thermal conductive composites with MXene[J]. China Plastics, 2024, 38(6): 139-144.
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、纤维素纳米纤维 | 14.93 | [ |
MXene、Cu、纤维素纳米纤维 | 24.96 | [ |
MXene、Ag 、纤维素纳米纤维 | 22.43 | [ |
MXene、甘露醇 | 36.3 | [ |
MXene、ND、纤维素纳米纤维、 | 17.43 | [ |
MXene、Ag纳米线、CNF、PDMS | 13.9 | [ |
MXene、CNF | 11.57 | [ |
MXene、BN、PBO | 26.1 | [ |
MXene、Ag纳米线、CNF | 15.53 | [ |
MXene、Ga、CNF | 9.11 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、纤维素纳米纤维 | 14.93 | [ |
MXene、Cu、纤维素纳米纤维 | 24.96 | [ |
MXene、Ag 、纤维素纳米纤维 | 22.43 | [ |
MXene、甘露醇 | 36.3 | [ |
MXene、ND、纤维素纳米纤维、 | 17.43 | [ |
MXene、Ag纳米线、CNF、PDMS | 13.9 | [ |
MXene、CNF | 11.57 | [ |
MXene、BN、PBO | 26.1 | [ |
MXene、Ag纳米线、CNF | 15.53 | [ |
MXene、Ga、CNF | 9.11 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、聚酰亚胺(PI) | 5.12 ± 0.37 | [ |
MXene、碳纤维、环氧树脂 | 9.68 | [ |
MXene、银、环氧树脂 | 2.65 | [ |
MXene、石墨烯、聚乙二醇(PEG) | 1.64 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、聚酰亚胺(PI) | 5.12 ± 0.37 | [ |
MXene、碳纤维、环氧树脂 | 9.68 | [ |
MXene、银、环氧树脂 | 2.65 | [ |
MXene、石墨烯、聚乙二醇(PEG) | 1.64 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、环氧树脂 | 0.587 | [ |
MXene、乙丙二烯橡胶(EPDM) | 1.57 | [ |
MXene、脱木质素纤维、环氧树脂 | 0.92 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、环氧树脂 | 0.587 | [ |
MXene、乙丙二烯橡胶(EPDM) | 1.57 | [ |
MXene、脱木质素纤维、环氧树脂 | 0.92 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、Al2O3、硅橡胶(SR) | 3.4 | [ |
MXene、环氧树脂 | 0.256 0 | [ |
MXene、氮化硼、PMMA | 4.13 | [ |
MXene、SiO2、羧甲基化纤维素纳米纤维(CNF) | 26.4 | [ |
材料 | 热导率/W•(m•K)-1 | 参考文献 |
---|---|---|
MXene、Al2O3、硅橡胶(SR) | 3.4 | [ |
MXene、环氧树脂 | 0.256 0 | [ |
MXene、氮化硼、PMMA | 4.13 | [ |
MXene、SiO2、羧甲基化纤维素纳米纤维(CNF) | 26.4 | [ |
1 | Ji Jiacheng, Sum⁃Wai Chiang, Liu Mengjing, et al. Enhanced thermal conductivity of alumina and carbon fibre filled composites by 3⁃D printing [J]. Thermochimica Acta, 2020,690.DOI:10.1016/j.tca.2020.178649 |
2 | Wu Xinfeng, Tang Bo, Chen Jin, et al. Epoxy composites with high cross⁃plane thermal conductivity by constructing all⁃carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology, 2021,203,108610 |
3 | Yang Xutong, Liang Chaobo, Ma Tengbo, et al. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods [J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 207⁃230. |
4 | 何一丹,章晓娟,杨红娟,等. MXene及其复合材料在吸波和导热领域的研究进展[J].中国塑料,2022,36(10):167⁃177. |
HE Y D, ZHANG X J, YANG H J, et al. Research progress in MXene and its composites for microwave absorption and thermal conduction[J].China Plastics,2022,36(10):167⁃177. | |
5 | Abiodun Oluwalowo, Nam Nguyen, Zhang Songlin, et al. Electrical and thermal conductivity improvement of carbon nanotube and silver composites [J]. Carbon, 2019,146:224⁃231. |
6 | Li Junhui, Li Xiang, Zheng Yu, et al. New underfill material based on copper nanoparticles coated with silica for high thermally conductive and electrically insulating epoxy composites [J]. Journal of Materials Science, 2019, 54(8): 6 258⁃6 271. |
7 | Shi Shanshan, Wang Ying, Jiang Tao, et al. Carbon Fiber/Phenolic Composites with High Thermal Conductivity Reinforced by a Three⁃Dimensional Carbon Fiber Felt Network Structure [J]. ACS Omega, 2022, 7(33): 29 433⁃29 442. |
8 | Taku Goto, Ito Tsuyohito, Koichi Mayumi, et al. Movable cross⁃linked elastomer with aligned carbon nanotube/nanofiber as high thermally conductive tough flexible composite [J]. Composites Science and Technology, 2020, 190:108009. |
9 | Song Na, Cao Donglei, Luo Xian, et al. Highly thermally conductive polypropylene/graphene composites for thermal management [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135:105912. |
10 | Zhong Bo, Zou Jiaxin, An Lulu, et al. The effects of the hexagonal boron nitride nanoflake properties on the thermal conductivity of hexagonal boron nitride nanoflake/silicone rubber composites [J]. Composites Part A: Applied Science and Manufacturing, 2019, 127:105629. |
11 | Lu Xiang, Huang Haowei, Zhang Xinya, et al. Novel light⁃driven and electro⁃driven polyethylene glycol/two⁃dimensional MXene form⁃stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage [J]. Composites Part B: Engineering, 2019, 177:107372. |
12 | Ding Yang, Lu Xiang, Liu Shuang, et al. Sandwich⁃structured multifunctional composite films with excellent electromagnetic interference shielding and light/electro/magnetic⁃to⁃thermal conversion and storage capabilities [J]. Composites Part A: Applied Science and Manufacturing, 2022, 163:107178. |
13 | Gao Lingfeng, Li Chao, Huang Weichun, et al. MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications [J]. Chemistry of Materials, 2020, 32(5): 1 703⁃1 747. |
14 | Wang Jianfeng, Shen Mingming, Liu Zhuoxin, et al. MXene materials for advanced thermal management and thermal energy utilization [J]. Nano Energy, 2022, 97:107177. |
15 | Yu Bin, Benjamin Tawiah, Wang Lin⁃Qiang, et al. Interface decoration of exfoliated MXene ultra⁃thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer [J]. Journal of Hazardous Materials, 2019,374:110⁃119. |
16 | Mirkhani Seyyed Alireza, Shayesteh Zeraati Ali, Ehsan Aliabadian, et al. High Dielectric Constant and Low Dielectric Loss via Poly(vinyl alcohol)/Ti3C2Tx MXene Nanocomposites [J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18 599⁃18 608. |
17 | Jiao Shangqing, Zhou Aiguo, Wu Mingzai, et al. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‐Solid‐State Stretchable Micro‐Supercapacitor Arrays [J]. Advanced Science, 2019, 6(12).DOI:10.1002/advs.201900529 |
18 | Wang Dezhao, Wei Han, Lin Ying, et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocomposites via filler⁃filler interface engineering [J]. Composites Science and Technology, 2021, 213:108953. |
19 | Guo Zhengzheng, Ren Penggang, Yang Fan, et al. Robust multifunctional composite films with alternating multilayered architecture for highly efficient electromagnetic interference shielding, Joule heating and infrared stealth [J]. Composites Part B: Engineering, 2023, 263:110863. |
20 | Lee J, Kim J. Enhancing the thermal conductivity of PEG composites with freeze⁃drying and surface treatment of MXene and CNT[J]. Materials Today Chemistry, 2023, 27:101305. |
21 | Li Mukun, Sun Yuyao, Feng Dianying, et al. Thermally conductive polyvinyl alcohol composite films via introducing hetero⁃structured MXene@silver fillers [J]. Nano Research, 2023, 16(5): 7 820⁃7 828. |
22 | Lian Richeng, Jiang Yunpeng, Guan Haocun, et al. Biomimetic construction of hierarchical MXene@PDA@CoFeO x nanohybrids towards efficient fire⁃safe epoxy nanocomposites with enhanced thermal conductivity and mechanical properties [J]. Polymer Degradation and Stability, 2023, 215:110444. |
23 | Jin Xiuxiu, Wang Jianfeng, Dai Lunzhi, et al. Flame⁃retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances [J]. Chemical Engineering Journal, 2020, 380:122475. |
24 | Jiao Enxiang, Wu Kun, Liu Yingchun, et al. Ultrarobust MXene⁃based laminated paper with excellent thermal conductivity and flame retardancy [J]. Composites Part A: Applied Science and Manufacturing, 2021, 146:106417. |
25 | Qin Yue, Li Linhong, Li Maohua, et al. Flexible MXene/copper/cellulose nanofiber heat spreader films with enhanced thermal conductivity [J]. Nanotechnology Reviews, 2022, 11(1): 1 583⁃1 591. |
26 | Jiao Enxiang, Wu Kun, Liu Yingchun, et al. Robust bioinspired MXene⁃based flexible films with excellent thermal conductivity and photothermal properties [J]. Composites Part A: Applied Science and Manufacturing, 2021, 143:106290. |
27 | Kong Xiangdong, Song Guichen, Chen Yapeng, et al. Mannitol enhanced thermal conductivity and environmental stability of highly aligned MXene composite film [J]. Composites Science and Technology, 2023, 241:110141. |
28 | Jiao Enxiang, Wu Kun, Liu Yingchun, et al. Nacre⁃like robust cellulose nanofibers/MXene films with high thermal conductivity and improved electrical insulation by nanodiamond [J]. Journal of Materials Science, 2022, 57(4): 2 584⁃2 596. |
29 | Hu Guirong, Dong Fuping, Xu Jing, et al. High thermally conductive, hydrophobic and small⁃thickness nanocomposite films with symmetrical double conductive networks exhibit ultra⁃high electromagnetic shielding performance [J]. Composites Part A: Applied Science and Manufacturing, 2023, 167:107416 |
30 | Song Guichen, Kang Ruiyang, Guo Liangchao, et al. Highly flexible few⁃layer Ti3C2 MXene/cellulose nanofiber heat⁃spreader films with enhanced thermal conductivity [J]. New Journal of Chemistry, 2020, 44(17): 7 186⁃7 193. |
31 | Liu Yong, Zhao Ning, Xu Jian. Mechanically Strong and Flame⁃Retardant PBO/BN/MXene Nanocomposite Paper with Low Thermal Expansion Coefficient, for Efficient EMI Shielding and Heat Dissipation [J]. Advanced Fiber Materials, 2023, DOI:10.1007/s42765-023-00298-0 |
32 | Zhou Bing, Li Qingtao, Xu Penghui, et al. An asymmetric sandwich structural cellulose⁃based film with self⁃supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management [J]. Nanoscale, 2021, 13(4): 2 378⁃2 388. |
33 | He Yuqi, Yang Jun, Chen Wentao, et al. Gallium⁃doped MXene/cellulose nanofiber composite membranes with electro/photo thermal conversion property for high performance electromagnetic interference shielding [J]. Chemical Engineering Journal, 2023, 464:142565. |
34 | Zhu Yue, Zhao Xingbin, Peng Qingyu, et al. Flame⁃retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy [J]. Nanoscale Advances, 2021, 3(19): 5 683⁃5 693. |
35 | Guo Liangchao, Zhang Zhenyu, Li Maohua, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze⁃drying [J]. Composites Communications, 2020, 19:134⁃141. |
36 | Ji Chao, Ying Wang, Ye Zhenqiang, et al. Ice⁃Templated MXene/Ag⁃Epoxy Nanocomposites as High⁃Performance Thermal Management Materials. [J].ACS Applied Materials & Interfaces,2020, 12(21):24 298–24 307. |
37 | Jin Liyuan, Wang Pei, Cao Wenjing, et al. Isolated Solid Wall⁃Assisted Thermal Conductive Performance of Three⁃Dimensional Anisotropic MXene/Graphene Polymeric Composites [J]. ACS Applied Materials & Interfaces, 2021, 14(1): 1 747⁃1 756. |
38 | Lee Seonmin, Dabin Park, Cho Youngsung, et al. Highly thermally conductive and EMI shielding composite reinforced with aligned carbon fibers and MXene [J]. Synthetic Metals, 2022, 291:117183 |
39 | Xu Hailong, Yin Xiaowei, Li Xinliang, et al. Lightweight Ti2CTx MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption⁃Dominated Feature [J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10 198⁃10 207. |
40 | Han Runlin, Ma Xufeng, Xie Yongli, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux [J]. RSC Advances, 2017, 7(89): 56 204⁃56 210. |
41 | Kang Ruiyang, Zhang Zhenyu, Guo Liangchao, et al. Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading [J]. Scientific Reports, 2019, 9(1). DOI:10.1038/s41598-019-45664-4 . |
42 | Lu Shaowei, Li Bohan, Ma Keming, et al. Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance [J]. Applied Physics A, 2020, 126(7).DOI:10.1007/s00339-020-03675-3 . |
43 | Zuo Shida, Shi Jiangjing, Wu Yingji, et al. Low carbon footprint preparation of MXene incorporated lignocellulosic fibers for high thermal conductivity applications [J]. Environmental Research, 2022, 215,114213. |
44 | Ye Zhenqiang, Ji Chao, Yu Tao, et al. Enhanced interfacial heat⁃transfer of Al2O3⁃MXene⁃silicone composite via an electrostatic self⁃assembly strategy [J]. International Journal of Heat and Mass Transfer, 2022, 199:123430. |
45 | Lian Richeng, Mingyu Ou, Zhao Zexuan, et al. Facile fabrication of novel fire⁃safe MXene@IL⁃based epoxy nanocomposite coatings with enhanced thermal conductivity and mechanical properties [J]. Progress in Organic Coatings, 2023, 183:107750. |
46 | Huang X, Tuersun Y, Huang M, et al. Highly enhanced thermal conductivity from boron nitride nanosheets and MXene phonon resonance in 3D PMMA spheres composites [J]. Materials Today Sustainability, 2023, 21:100269. |
47 | Zhan Yingjie, Bingfei Nan, Liu Yingchun, et al. Multifunctional cellulose⁃based fireproof thermal conductive nanocomposite films assembled by in⁃situ grown SiO2 nanoparticle onto MXene [J]. Chemical Engineering Journal, 2021, 421:129733. |
[1] | 何和智, 黄宗海, 赖文, 熊华威. PLA/PBAT/CB防静电包装材料的制备及其性能研究[J]. 中国塑料, 2024, 38(7): 1-8. |
[2] | 魏佳, 刘凯, 彭丽娟, 田阳阳, 赵琳, 李艳红, 杨佩佩, 李松伟, 陆波. 壳聚糖/聚苯胺⁃氧化石墨烯尼古丁分子印迹复合材料的制备与吸附性能研究[J]. 中国塑料, 2024, 38(7): 32-36. |
[3] | 叶卫文, 陈镇森, 姜炳春, 吴光明. 汽车热交换系统直管口双缩柯水室模具设计[J]. 中国塑料, 2024, 38(6): 117-124. |
[4] | 王涵, 梁金华, 高振国, 姜炜, 周昊. 微胶囊型自修复环氧树脂材料的力学性能及修复效率[J]. 中国塑料, 2024, 38(5): 40-46. |
[5] | 李轩, 何瑜, 明白, 张晓燕, 刘福华, 来升. 聚酰亚胺树脂基复合摩擦材料成型技术研究进展[J]. 中国塑料, 2024, 38(4): 116-123. |
[6] | 赵小红, 卢杏. 淀粉的改性及其对淀粉/PBAT/碳酸钙复合材料结构和性能的影响[J]. 中国塑料, 2024, 38(4): 40-46. |
[7] | 姜曙, 王阳, 翟孟雷, 李庆涛, 黄明, 刘春太. 连续碳纤增强B柱加强板结构设计与铺覆仿真[J]. 中国塑料, 2024, 38(4): 73-78. |
[8] | 国江, 许梦伊, 李辉, 黄想, 林浩, 姜胜宝, 陈尚, 陈程. 聚丙烯/氧化锆复合材料的制备及介电性能研究[J]. 中国塑料, 2024, 38(3): 44-48. |
[9] | 陈清江, 董志聪, 李红发, 吴毅江, 高松, 聂文翔, 罗应文. 改性纳米氧化镁交联聚乙烯复合材料的制备及其电气性能研究[J]. 中国塑料, 2024, 38(2): 20-25. |
[10] | 段书谦, 刘姝雅, 刘江慧, 成晓琼, 蒙丹, 张先群, 陈肖, 付海. 网络化聚吡咯/聚氨酯复合材料的抗静电性能研究[J]. 中国塑料, 2024, 38(2): 33-38. |
[11] | 韩志勇, 马斯景, 路鹏程. 铝合金与复合材料连接表面处理方法的研究进展[J]. 中国塑料, 2024, 38(1): 124-133. |
[12] | 叶卫文, 陈镇森, 姜炳春, 吴光明. 汽车热交换系统斜向管口气室模具设计[J]. 中国塑料, 2023, 37(9): 102-108. |
[13] | 相利学, 唐波, 周刚, 代旭明, 王二轲, 姜涛, 吴新锋. 3D打印技术在高导热复合材料中的应用研究[J]. 中国塑料, 2023, 37(9): 125-132. |
[14] | 李家伟 张克宏 李文慧 郭星雨 丁宇. 聚羟基脂肪酸酯/茶粉复合材料的制备与性能研究[J]. , 2023, 37(6): 10-15. |
[15] | 王怡佳 张燕 陈婷 刘继延 刘学清. 聚氨酯/甲基二苯基氧化膦的冷结晶及阻燃性能研究[J]. , 2023, 37(5): 104-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||