
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (4): 31-36.DOI: 10.19491/j.issn.1001-9278.2025.04.006
收稿日期:
2024-06-28
出版日期:
2025-04-26
发布日期:
2025-04-23
通讯作者:
何吉宇(1970—),男,教授,主要从事多功能复合材料研究,hejiyu@bit.edu.cn作者简介:
宋昆朋(1996—),男,博士研究生,主要从事纳米复合材料研究,13439970074@163.com
SONG Kunpeng(), BAI Wei, XIE Meina, HE Jiyu(
), YANG Rongjie
Received:
2024-06-28
Online:
2025-04-26
Published:
2025-04-23
Contact:
HE Jiyu
E-mail:13439970074@163.com;hejiyu@bit.edu.cn
摘要:
以钴层状双氢氧化物(Co⁃LDH)作为载体,原位构建了Co⁃LDH@ZIF⁃67复合结构,有效地改善了Co⁃LDH的低催化活性和低比表面积的缺陷。结果表明,与Co⁃LDH相比,Co⁃LDH@ZIF⁃67改性的环氧树脂(EP)复合材料在抑制热量、烟雾和有毒气体方面具有明显的优势。当Co⁃LDH@ZIF⁃67含量为2 %(质量分数,下同)时,复合材料的LOI值由24.5 %增加到28.2 %。并且与纯EP相比,EP/Co⁃LDH@ZIF⁃67复合材料的热释放速率峰值、总热释放以及总烟释放分别降低35.1 %、16.3 %和15.8 %。并且相对于Co⁃LDH具有更明显的阻燃和抑烟的能力。
中图分类号:
宋昆朋, 白伟, 谢美娜, 何吉宇, 杨荣杰. 层状双氢氧化物原位生长ZIF⁃67纳米晶体用于阻燃环氧复合材料[J]. 中国塑料, 2025, 39(4): 31-36.
SONG Kunpeng, BAI Wei, XIE Meina, HE Jiyu, YANG Rongjie. In situ growth of ZIF-67 nanocrystals on layered double hydroxides for flame⁃retardant epoxy composites[J]. China Plastics, 2025, 39(4): 31-36.
样品 | T5 %/℃ | Tmax/℃ | 800 ℃下的残炭率/% |
---|---|---|---|
EP | 355.6 | 399.6 | 5.6 |
EP/Co⁃LDH | 338.5 | 365.1 | 12.4 |
EP/Co⁃LDH@ZIF | 339.6 | 366.8 | 16.8 |
样品 | T5 %/℃ | Tmax/℃ | 800 ℃下的残炭率/% |
---|---|---|---|
EP | 355.6 | 399.6 | 5.6 |
EP/Co⁃LDH | 338.5 | 365.1 | 12.4 |
EP/Co⁃LDH@ZIF | 339.6 | 366.8 | 16.8 |
参数 | EP | EP/Co⁃LDH | EP/Co⁃LDH@ZIF |
---|---|---|---|
LOI/% | 24.5 | 26.1 | 28.2 |
PHRR/kW·m-2 | 1 200.1 | 1 005.9 | 778.6 |
THR/MJ·m-2 (500 s) | 88.7 | 82.6 | 74.2 |
TSP/m2(500 s) | 23.4 | 22.3 | 19.7 |
av⁃COY/kg·kg-1 | 0.094 0 | 0.089 8 | 0.084 5 |
av⁃CO2Y/kg·kg-1 | 1.913 5 | 1.862 6 | 1.725 0 |
残炭率/% | 3.4 | 5.9 | 8.2 |
参数 | EP | EP/Co⁃LDH | EP/Co⁃LDH@ZIF |
---|---|---|---|
LOI/% | 24.5 | 26.1 | 28.2 |
PHRR/kW·m-2 | 1 200.1 | 1 005.9 | 778.6 |
THR/MJ·m-2 (500 s) | 88.7 | 82.6 | 74.2 |
TSP/m2(500 s) | 23.4 | 22.3 | 19.7 |
av⁃COY/kg·kg-1 | 0.094 0 | 0.089 8 | 0.084 5 |
av⁃CO2Y/kg·kg-1 | 1.913 5 | 1.862 6 | 1.725 0 |
残炭率/% | 3.4 | 5.9 | 8.2 |
1 | Zou Y, Xiong Z, Li Y, et al. Phosphoric acid⁃based hydrogen⁃bonded organic framework offer both photoluminescence⁃functionalized and excellent flame retardancy for epoxy composite [J]. Chemical Engineering Journal, 2023, 476: 146651. |
2 | Zhang A, Zhang J, Liu L, et al. Engineering phosphorus⁃containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties [J]. Journal of Materials Science & Technology, 2023, 167: 82⁃93. |
3 | Liu X, Zhou J, Zhao J, et al. Design and synthesis of polyetherimides as a flame⁃retarded thermolatent hardener for high⁃performance epoxy thermosets [J]. Composites Part B: Engineering, 2023, 259: 110754. |
4 | Deng C, Liu Y, Jian H, et al. Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al⁃LDH [J]. Construction and Building Materials, 2023, 374: 130939. |
5 | Kim M, Kim J. Enhancement of the flame retardant properties of PPS⁃based composites via the addition of melamine⁃coated CaAl⁃LDH fire⁃retardant filler [J]. European Polymer Journal, 2023, 201: 112584. |
6 | Yu J, Wang Q, O'Hare D, et al. Preparation of two dimensional layered double hydroxide nanosheets and their applications [J]. Chemical Society Reviews, 2017, 46: 5 950⁃5 974. |
7 | Song K, Zhang H, Pan Y T, et al. Metal⁃organic framework⁃derived bird's nest⁃like capsules for phosphorous small molecules towards flame retardant polyurea composites [J]. Journal of Colloid and Interface Science, 2023, 643: 489⁃501. |
8 | Wang T J, Liu X, Li Y, et al. Ultrasonication⁃assisted and gram⁃scale synthesis of Co⁃LDH nanosheet aggregates for oxygen evolution reaction [J]. Nano Research, 2020, 13: 79⁃85. |
9 | Song K, Li X, Pan Y T, et al. The influence on flame retardant epoxy composites by a bird's nest⁃like structure of Co⁃based isomers evolved from zeolitic imidazolate framework-67 [J]. Polymer Degradation and Stability, 2023, 211: 110318. |
10 | Song K, Bi X, Yu C, et al. A Gas⁃steamed route to mesoporous open metal⁃organic framework cages enhancing flame retardancy and smoke suppression of polyurea [J]. ACS Applied Materials & Interfaces, 2024, 16: 7 617⁃7 630. |
11 | Wang X, Wu T, Hong J, et al. Organophosphorus modified hollow bimetallic organic frameworks: Effective adsorption and catalytic charring of pyrolytic volatiles [J]. Chemical Engineering Journal, 2021, 421: 129697. |
12 | Bi X, Song K, Zhang H, et al. Dimensional change of red phosphorus into nanosheets by metal–organic frameworks with enhanced dispersion in flame retardant polyurea composites [J]. Chemical Engineering Journal, 2024, 482: 148997. |
13 | Han Z, Zhang W, Song X, et al. Fast char formation induced by POSS confining Co⁃MOF hollow prisms in epoxy composites with mitigated heat and smoke hazards [J]. Chemical Engineering Journal, 2023, 474: 145682. |
14 | Sun Y, Yu B, Liu Y, et al. Bio⁃inspired surface manipulation of halloysite nanotubes for high⁃performance flame retardant polylactic acid nanocomposites [J]. Nano Research, 2024, 17: 1 595⁃1 606. |
15 | Wang R, Chen Y, Liu Y, et al. Synthesis of sugar gourd⁃like metal organic framework⁃derived hollow nanocages nickel molybdate@cobalt⁃nickel layered double hydroxide for flame retardant polyurea [J]. Journal of Colloid and Interface Science, 2022, 616: 234⁃245. |
16 | Sun Y, Yu B, Liu Y, et al. Design of 2D charring⁃foaming agent for highly efficient intumescent flame retardant polylactic acid composites [J]. Composites Communications, 2023, 43: 101720. |
17 | Song K, Pan Y T, Zhang J, et al. Metal⁃organic frameworks⁃based flame⁃retardant system for epoxy resin: a review and prospect [J]. Chemical Engineering Journal, 2023, 468: 143653. |
18 | Zhang J, Li Z, Qi X L, et al. Recent progress on metal⁃organic framework and its derivatives as novel fire retardants to polymeric materials [J]. Nano⁃Micro Letters, 2020, 12: 173. |
[1] | 宋昆朋 白伟 谢美娜 何吉宇 杨荣杰. 层状双氢氧化物原位生长ZIF-67纳米晶体用于阻燃环氧复合材料[J]. , 2025, 39(5): 31-36. |
[2] | 吴启民, 王伟民, 勒德亮, 林忠华, 裴克梅. 环氧树脂水泥砂浆修补材料的研究进展[J]. 中国塑料, 2025, 39(3): 109-113. |
[3] | 武本泽, 李滨, 雷园, 黄绍军, 吕汶骏, 余传柏. 表面改性Sb2O3对阻燃ABS/DBDPE/ Sb2O3复合材料性能的影响[J]. 中国塑料, 2025, 39(3): 81-85. |
[4] | 吴启民 林忠华 王伟民 勒德亮 裴克梅. 环氧树脂水泥砂浆修补材料的研究进展[J]. , 2025, 39(3): 109-113. |
[5] | 武本泽 余传柏 李滨 雷圆 黄绍军 吕汶骏. 表面改性Sb2O3对阻燃ABS/DBDPE/Sb2O3复合材料性能的影响[J]. , 2025, 39(3): 81-85. |
[6] | 丁雯. 磷基⁃水性聚氨酯阻燃剂的制备及对棉织物的涂层[J]. 中国塑料, 2025, 39(2): 82-85. |
[7] | 王波, 张乾, 高艳, 吴龙坤, 雷颖, 刘念杰. 功能型有机硅改性环氧树脂的研究新进展[J]. 中国塑料, 2025, 39(1): 126-131. |
[8] | 纪嘉骏, 张增平, 李俊辉, 施恩, 李清旭. 用于公路工程的环氧树脂密封胶的研究与应用进展[J]. 中国塑料, 2025, 39(1): 63-74. |
[9] | 沈文涛, 胡心蕊, 张硕, 许苗军. MOF⁃74协同膨胀阻燃EVA及其性能研究[J]. 中国塑料, 2024, 38(9): 20-23. |
[10] | 曲道鹏, 张涛, 华晨曦, 宋欣雨, 程昌利, 刘禹, 王震宇. 高强电磁屏蔽环氧复合材料的3D打印工艺研究[J]. 中国塑料, 2024, 38(9): 24-29. |
[11] | 武伟红, 张竞, 张葛, 耿荣荣, 屈红强. 焦磷酸哌嗪@COF阻燃剂的制备及其对环氧树脂的阻燃作用[J]. 中国塑料, 2024, 38(8): 88-93. |
[12] | 杜蓉, 林潼, 肖航, 殷绿, 张进. 纳米Fe3O4改性环氧树脂涂料的制备、性能与应用研究进展[J]. 中国塑料, 2024, 38(6): 132-138. |
[13] | 王涵, 梁金华, 高振国, 姜炜, 周昊. 微胶囊型自修复环氧树脂材料的力学性能及修复效率[J]. 中国塑料, 2024, 38(5): 40-46. |
[14] | 张青松, 李良勇, 曹炜强, 程艳雯, 彭天祥, 王俊潼, 李后杨. 碱处理椰壳纤维织物对环氧树脂基材料拉伸性能影响研究[J]. 中国塑料, 2024, 38(4): 26-31. |
[15] | 赵川涛, 贾志欣, 刘立君, 李继强, 张臣臣, 荣迪, 高利珍, 姚吉尔. 环氧树脂/碳纤维复合材料模压制品翘曲变形的影响因素分析[J]. 中国塑料, 2024, 38(3): 59-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||