1 |
Periyasamy A P, Venkataraman M, Militky J. Effect of sol–gel treatment on physical, chemical and mechanical stability of copper⁃coated conductive fabrics: focus on EMI shielding effectiveness[J]. Journal of Materials Science, 2022, 57(44): 20 780⁃20 793.
|
2 |
Zou K, Sun H, Li X, et al. Extreme environment⁃bearable polyimide film with a three⁃dimensional Ag microfiber conductive network for ultrahigh electromagnetic interference shielding[J]. Science China Materials, 2023, 66(4): 1 578⁃1 586.
|
3 |
陈 晖,孙玲胜,钱伟栋,等.选择性激光烧结聚醚砜树脂/碳纤维/炭黑复合材料的性能研究[J].中国塑料,2023,37(09):14⁃18.DOI:10.19491/j.issn.1001-9278.2023.09.003 .
|
|
CHEN H, SUN L S, QIAN W D, et al. Study on properties of PES/CF/CB composites through selective laser sintering[J]. China Plastics, 2023,37(09):14⁃18.DOI:10.19491/j.issn.1001-9278.2023.09.003 .
|
4 |
Wang L, Li X, Qian Y, et al. MXene‐Layered Double Hydroxide Reinforced Epoxy Nanocomposite with Enhanced Electromagnetic Wave Absorption, Thermal Conductivity, and Flame Retardancy in Electronic Packaging[J]. Small, 2023: 2304311.
|
5 |
Han L, Li K, Xiao C, et al. Carbon nanotube⁃vertical edge rich graphene hybrid sponge as multifunctional reinforcements for high performance epoxy composites[J]. Carbon, 2023, 201: 871⁃880.
|
6 |
YE X, HU Z, LI X, et al. Non⁃Isothermal Crystallization Kinetics of Polyether⁃Ether⁃Ketone Nanocomposites and Analysis of the Mechanical and Electrical Conductivity Performance[J]. Polymers, 2022, 14(21).
|
7 |
ORABY H, TANTAWY H R, CORREA⁃DUARTE M A, et al. Tuning Electro⁃Magnetic Interference Shielding Efficiency of Customized Polyurethane Composite Foams Taking Advantage of rGO/Fe3O4 Hybrid Nanocomposites[J]. Nanomaterials, 2022, 12(16).
|
8 |
ZHOU S, ZHANG G, NIE Z, et al. Recent advances in 3D printed structures for electromagnetic wave absorbing and shielding[J]. Materials Chemistry Frontiers, 2022, 6(13):1 736⁃1 751.
|
9 |
DU Q, LI C, LIU C, et al. Skeleton designable SGP/EA resin composites with integrated thermal conductivity, electromagnetic interference shielding, and mechanical performances[J]. Composites Science and Technology, 2022, 229.
|
10 |
HONG S Y, SUN Y, LEE J, et al. 3D printing of free⁃standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding[J]. Polymer, 2021, 236.
|
11 |
LV Q, PENG Z, MENG Y, et al. Three⁃Dimensional Printing to Fabricate Graphene⁃Modified Polyolefin Elastomer Flexible Composites with Tailorable Porous Structures for Electromagnetic Interference Shielding and Thermal Management Application[J]. Industrial & Engineering Chemistry Research, 2022, 61(45):16 733⁃16 746.
|
12 |
WU T, HUAN X, ZHANG H, et al. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D⁃printing enabling electromagnetic shielding regulation[J]. Journal of Colloid and Interface Science, 2023, 638:392⁃402.
|
13 |
Pei X, Zhao M, Li R, et al. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106363.
|
14 |
Xu J, Zhang X, Liu Y, et al. Selective coaxial ink 3D printing for single⁃pass fabrication of smart elastomeric foam with embedded stretchable sensor[J]. Additive Manufacturing, 2020, 36: 101487.
|
15 |
朱彦博,杜 淼,陆超华,等.3D打印TPU软材料工艺参数对层间粘接的影响[J].高分子学报,2018(04):532⁃540.
|
|
ZHU Y B, DU M, LU C H, et al. Influence of 3D printing parameters on the lnterlayer bonding strength for TPU soft materials[J]. Acta Polymerica Sinica, 2018,(04):532⁃540.
|
16 |
张行乐,仰钧毅,程昌利,等.基于直写成型的环氧复合材料网格结构制备及其增强增韧机制[J].复合材料学报,2023,40(10):5 621⁃5 629.DOI:10.13801/j.cnki.fhclxb.20230104.002 .
|
|
ZHANG X L, YANG J Y, CHENG C L, et al. Direct ink writing of epoxy⁃based composite lattice and its strengthening and toughening mechanisms[J]. Acta Materiae Compositae Sinica, 2023,40(10):5 621⁃5 629.DOI:10.13801/j.cnki.fhclxb.20230104.002 .
|
17 |
李西敏,杨韬,彭必友 等.二氧化钛陶瓷浆料的制备及其直写成型3D打印[J].复合材料学报,2022,39(07):3 510⁃3 517.DOI:10.13801/j.cnki.fhclxb.20210817.001 .
|
|
LI X M, YANG T, PENG B Y, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct⁃ink⁃writing[J]. Acta Materiae Compositae Sinica,2022,39(07):3 510⁃3 517.DOI:10.13801/j.cnki.fhclx-b.20210817.001
|
18 |
Gebrekrstos A, Orasugh J T, Muzata T S, et al. Cellulose‐Based Sustainable Composites: A Review of Systems for Applications in EMI Shielding and Sensors[J]. Macromolecular Materials and Engineering, 2022, 307(9): 2200185.
|
19 |
Zhao B, Hamidinejad M, Wang S, et al. Advances in electromagnetic shielding properties of composite foams[J]. Journal of Materials Chemistry A, 2021, 9(14): 8 896⁃8 949.
|
20 |
Wang M, Tang X H, Cai J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377⁃402.
|
21 |
Huang J, Zhao X, Wu Y, et al. Facile green path to interconnected nano⁃graphite networks to overtake graphene as conductive fillers[J]. Carbon, 2021, 173: 667⁃675.
|
22 |
Jia L J, Phule A D, Geng Y, et al. Microcellular Conductive Carbon Black or Graphene/PVDF Composite Foam with 3D Conductive Channel: A Promising Lightweight, Heat‐Insulating, and EMI‐Shielding Material[J]. Macromolecular Materials and Engineering, 2021, 306(4): 2000759.
|
23 |
汪恒,冯舒玥,胡峻豪 等. Ti_(3)C_(2)T_(x)基复合电磁屏蔽材料的结构设计与性能研究进展 [J/OL].[2024⁃01⁃21].复合材料学报, 1⁃17..
|
24 |
Wang Z, Zhang X, Cheng C, et al. 3D printed epoxy composite microsandwich with high strength, toughness, and EMI shielding performances[J]. Composite Structures, 2023, 323: 117456.
|