1 |
KARA Y, MOLNÁR K. A review of processing strategies to generate melt⁃blown nano/microfiber mats for high⁃efficiency filtration applications[J]. Journal of Industrial Textiles, 2022, 51(S1): 137⁃180.
|
2 |
HIREMATH Nitilaksha, BHAT Gajanan. Melt blown polymeric nan⁃ofibers for medical applications: an overview[J]. Nano⁃science and Technology, 2015, 2(1): 1⁃9.
|
3 |
洪粲. 熔喷非织造布生产应用及专用料的制备[J]. 化工进展, 2004, 23(7): 778⁃781.
|
|
HONG C. Manufacture and application about the melt⁃blown no⁃woven fabric and the preparation of the special material[J]. Chemical Industry and Engineering Progress, 2004, 23(7): 778⁃781.
|
4 |
JIRI Drabek, MARTIN Zatloukal. Meltblown technology for production of polymeric micro/nano fibers: A review[J]. Physics of Fluids, 2019, 31(9): 1⁃3.
|
5 |
YU Bin, Jian Han, SUN Hui, et al. The preparation and property of poly (lactic acid)/tourmaline blends and melt‐blown nonwoven[J]. Polymer Composites, 2015, 36(2): 264⁃271.
|
6 |
刘琛, 杨凯璐, 陈明星, 等. 熔喷非织造材料制备及其应用研究进展[J]. 现代纺织技术, 2024, 32(5): 116⁃129.
|
|
LIU C, YANG K L, CHEN M X, et al. Research progress in the preparation and application of melt⁃blown nonwovens[J]. Advanced Textile Technology, 2024, 32(5): 116⁃129.
|
7 |
杨潇东, 于斌, 孙辉, 等. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(2): 19⁃26.
|
|
YANG X D, YU B, SUN H, et al. Preparation and filtration properties of polyethylene trifluoroethylene melt⁃blown nonwovens[J]. Journal of Textile Research, 2023, 44(2): 19⁃26.
|
8 |
彭孟娜, 马建伟. 熔喷工艺对PP/TPU非织造布结构与性能影响的研究[J]. 产业用纺织品, 2020, 38(6): 11⁃15.
|
|
PENG M N, MA J W. Study on effects of the melt blown technology on structure and properties of PP/TPU nonwovens[J]. Technical Textiles, 2020, 38(6): 11⁃15.
|
9 |
邬治平, 杨丽. 超细纤维的应用及其研究进展[J]. 科技创新与应用, 2016, 32: 88⁃89.
|
|
WU Z P, YANG L. Application of microfiber and its research progress[J]. Technology Innovation and Application, 2016, 32: 88⁃89.
|
10 |
SANYAL A, Sinha⁃Ray S. Ultrafine PVDF nanofibers for filtration of air⁃borne particulate matters: a comprehensive review[J]. Polymers, 2021, 13(11): 1864.
|
11 |
FULENCHEK Jennifer, Donna Glenn, Melissa Fite, et al. Comparing the microbial removal efficacy of new and reprocessed microfiber on health care surfaces[J]. American Journal of Infection Control, 2021, 13(11): 1864.
|
12 |
Junghyuk KO, Mohtaram Nima Khadem, Farid Ahnmed, et al. Fabrication of poly (epsilon⁃caprolactone) microfiber scaffolds with varying topography and mechanical properties for stem cell⁃based tissue engineering applications[J]. Journal of Biomaterials Science⁃Polymer Edition, 2014, 25(1): 1⁃17.
|
13 |
CHUNG Changkwon, Kumar Satish. Onset of whipping in the melt blowing process[J]. Journal of Non⁃Newtonian Fluid Mechanics, 2013, 192: 37⁃47.
|
14 |
LUISO Salvatore, HENRY James J, Behnam Pourdeyhimi, et al. Fabrication and characterization of meltblown poly(vinylidene difluoride) membranes[J]. ACS Applied Polymer Materials, 2022, 2(7): 2 849–2 857.
|
15 |
TAN Dawud H, ZHOU Chunfeng, ELLISON Christopher J, et al. Meltblown fibers: Influence of viscosity and elasticity on diameter distribution[J]. Journal of Non⁃Newtonian Fluid Mechanics, 2010, 165(15/16): 892⁃900.
|
16 |
DENG Nanping, HE Hongsheng, YAN Jing, et al. One⁃step melt⁃blowing of multi⁃scale micro/nano fabric membrane for advanced air⁃filtration[J]. Polymer, 2019, 165: 174⁃179.
|
17 |
BIER Alexander M, REEL Michael, SCHUBERT Dirk W. Model to predict polymer fibre diameter during melt spinning[J]. Advances in Polymer Technology, 2023: 1⁃11.
|
18 |
BRESEE Randall R, Wen⁃Chien KO. Fiber Formation during Melt Blowing[J]. International Nonwovens Journal, 2003, 12(2): 21⁃28.
|
19 |
闫新, 宋会芬, 石素宇, 等. 热塑性聚氨酯熔喷非织造布的制备及表征[J]. 现代纺织技术, 2019, 27(1): 6⁃10.
|
|
YAN X, SONG H F, SHI S Y, et al. Preparation and characterization of thermoplastic polyurethane meltblows[J]. Advanced Textile Technology, 2019, 27(1): 6⁃10.
|
20 |
高林娜, 吁苏云, 钟贵云, 等. 熔喷法乙烯⁃三氟氯乙烯共聚物膜的制备与性能研究[J]. 塑料工业, 2022, 50(3): 73⁃78.
|
|
GAO L N, YU S Y, ZHONG G Y, et al. Preparation and performance of melt⁃blown ethylene chlorotrifluoro⁃ethylene copolymer membrane[J]. China Plastics Industry, 2022, 50(3): 73⁃78.
|
21 |
JAFARI Mehran, SHIM Eunkyoung, JOIJODE Abhay. Fabrication of poly (lactic acid) filter media via the meltblowing process and their filtration performances: A comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021, 260: 118 185⁃118 199.
|
22 |
CHHABRA Rajeev. Nonwoven uniformity — measurements using image analysis[J]. International Nonwovens Journal, 2003,12(1): 43⁃50.
|
23 |
ZHANG Haifeng, LIU Jinxin, ZHANG Xing, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. RSC Advances, 2018, 8(15): 7 932⁃7 941.
|
24 |
郑海明, 陆国英, 徐建明, 等. 超细纤维结构的聚丙烯熔喷无纺布的制备及其性能研究[J]. 浙江化工, 2022, 53(2): 23⁃26.
|
|
ZHENG H M, LU G Y, XU J M, et al. Study on preparation and performance of polypropylene meltblown nonwoven material with ultrafine fiber structure [J]. Zhejiang Chemical Industry, 2022, 53(2): 23⁃26.
|
25 |
SUN Guangwu, CHEN Yu, RUAN Yanwen, et al. Modeling and experimental study of pore structure in melt⁃blown fiber assembly[J]. Journal of Industrial Textiles, 2022, 51(4): 6 051⁃6 064.
|
26 |
XU Huawei, ZHOU Zhijun, LIU Jie, et al. Preliminary study of the effect of secondary airflow on fiber attenuation during melt blowing[J]. Fibers and Polymers, 2022, 23(11): 3 039⁃3 045.
|
27 |
JIANG Taijun, ZENG Guangsheng, HU Can, et al. Optimization of processing parameters for particle filtration efficiency of polypropylene melt⁃blown fabric[J]. Fibers and Polymers, 2021, 22(4): 957⁃963.
|
28 |
李志, 赵增辉, 贾国胜, 等. 高熔融指数聚乙烯的性能分析及熔喷探索[J]. 合成纤维, 2023,52(11): 1⁃6.
|
|
LI Z, ZHAO Z H, JIA G S, et al. Performance analysis andmelt⁃blown research of high melting index polyethylene[J]. Synthetic Fiber in China, 2023,52(11): 1⁃6
|
29 |
刘亚, 程可为, 赵义侠, 等. 热塑性聚氨酯熔喷非织造材料制备与性能[J]. 纺织学报, 2022, 13(11): 88⁃93.
|
|
LIU Y, CHENG K W, ZHAO Y X, et al. Preparation and properties of thermoplastic polyurethane meltblowns [J]. Journal of Textile Research, 2022, 13(11): 88⁃93.
|
30 |
秦子轩, 张恒, 甘益, 等. PLA /PCL@EBS 超细纤维贴肤材料的熔喷制备工艺及其柔软性[J]. 塑料工业, 2024, 52(2): 16⁃23.
|
|
QIN Z X, ZHANG H, GAN Y, et al. Preparation of the PLA/PCL@EBS microfibrous skin cover microfibrous via melt blowing process and softness [J]. China Plastics Industry, 2024, 52(2): 16⁃23.
|
31 |
潘晓娣, 覃燕杰, 陈海燕. PP熔喷非织造布原料性能及关键工艺研究[J]. 合成技术及应用, 2024, 39(1): 33⁃38.
|
|
PAN X D, QIN Y J, CHEN H Y. Research on the properties of polypropylene and key processes of melt blown non woven fabrics [J]. Synthetic Technology & Application, 2024, 39(1): 33⁃38.
|
32 |
XIE Sheng, HAN Wanli, JIANG Guojun, et al. Turbulent air flow field in slot⁃die melt blowing for manufacturing microfibrous nonwoven materials[J]. Journal of Materials Science, 2018,53(9): 6 991⁃7 003.
|
33 |
于斌, 张旭阳, 孔瑾瑾, 等 DCD对PLA熔喷纤网结构和性能的影响 [J]. 稀有金属材料与工程, 2016, 45(S1): 345⁃349.
|
|
YU B, ZHANG X Y, KONG J J, et al. Influence of die⁃to⁃collector distance on structure and property of the PLA meltblowing web[J]. Rare Metal Materials and Engineering, 2016, 45(S1): 345⁃349.
|
34 |
YESIL Yalcin, BHAT Gajanan S. Structure and mechanical properties of polyethylene melt blown nonwovens[J]. International Journal of Clothing Science and Technology, 2016, 28(6): 780⁃793.
|
35 |
YU Yang, SHIM Eunkyoung. Process⁃structure⁃property relationship of meltblownpoly(styrene⁃ethylene/butylene⁃styrene)nonwo⁃vens[J].Applied Polymer Science, 2021, 138(16): 50 230⁃50 241.
|
36 |
BRESEE Randall R, QURESHI Uzair A. Influence of processing conditions on melt blown web structure: Part 1⁃DCD[J]. International Nonwovens Journal, 2004, 13(1): 49⁃55.
|
37 |
胡声威, 钱鑫, 王素玉, 等. 熔喷聚丙烯原料性能及加工工艺研究[J]. 塑料工业, 2021, 49(7): 148⁃150.
|
|
HU S W, QIAN X, WANG S Y, et al. Study on properties and processing technology of melt⁃blow poly⁃propylene raw material[J]. China Plastics Industry, 2021, 49(7): 148⁃150.
|
38 |
方丽莉, 李永贵, 麻文效, 等. 聚丙烯熔喷非织造布的制备工艺及其性能研究[J]. 化工新型材料, 2022, 50: 183⁃190.
|
|
FANG L L, LI Y G, MA W X, et al. Preparation process and property of PP melt⁃blown nonwoven[J]. New Chemical Materials, 2022, 50: 183⁃190.
|
39 |
HODA Numan, MERT Firdevs, KARA Fatma, et al. Effect of process parameters on fiber diameter and fiber distribution of melt⁃blown polypropylene microfibers produced by biax line[J] Fibers and Polymers, 2021, 22(1): 285⁃293.
|
40 |
郑海明, 陆国英, 徐建明, 等. 超细纤维结构的聚丙烯熔喷无纺布的制备及其性能研究[J]. 浙江化工, 2022, 53(2): 23⁃26.
|
|
ZHENG H M, LU G Y, XU J M, et al. Study on preparation and performance of polypropylene meltblown nonwoven material with ultrafine fiber structure[J]. Zhejiang Chemical Industry, 2022, 53(2): 23⁃26.
|
41 |
辛三法, 王新厚, 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2016, 36(7): 7⁃11.
|
|
XIN S F, WANG X H, HU S Z. Manufacture technology of micro⁃nano fiber by melt blowing [J]. Journal of Textile Research, 2016, 36(7): 7⁃11.
|
42 |
XIE Sheng, ZENG Yongchun. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5 346⁃5 352.
|
43 |
ELLISON Christopher J, PHATAK Alhad, GILES David W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup[J]. Polymer, 2007, 48(11): 3 306⁃3 316.
|
44 |
HASSAN Mohammad Abouelreesh, YEOM Bong Yeol, WILKIE Arnold, et al. Fabrication of nanofiber meltblown membranes and their filtration properties[J]. Journal of Membrane Science, 2013, 427: 336⁃344.
|
45 |
ZOU Fangdong, LI Yifei, LIN Meng, et al. Enhancement of fiber attenuation and filtration quality via electrostatic⁃induction⁃assisted melt blowing[J]. Textile Research Journal, 2022, 92(21/22): 48⁃52.
|
46 |
LEE Y, WATANABE K, NAKAMURA T, et al. Development of melt blown electrospinning apparatus of isotactic polypropylene[J]. Nano Science and Technology Institute, 2010,1: 826⁃829.
|
47 |
ERBEN Jakub, JENCOVA Vera, CHVOJKA Jiri, et al. The combination of meltblown technology and electrospinning – The influence of the ratio of micro and nanofibers on cell viability[J]. Materials letters, 2016, 173: 153⁃157.
|
48 |
PU Yi, ZHANG Jie, CHEN Fuxing, et al. Preparation of Polypropylene Micro and Nanofibers by Electrostatic⁃Assisted Melt Blown and Their Application[J]. Polymers, 2018, 10(9): 959.
|