京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (8): 166-175.DOI: 10.19491/j.issn.1001-9278.2022.08.025
• Review • Previous Articles
BAI Shuiquan(), BIAN Jiacheng, WANG Leyuan, YANG Jiahua, DENG Yafeng(
)
Received:
2022-01-14
Online:
2022-08-26
Published:
2022-08-22
CLC Number:
BAI Shuiquan, BIAN Jiacheng, WANG Leyuan, YANG Jiahua, DENG Yafeng. Research progress in removal technologies of microplastics in water environment[J]. China Plastics, 2022, 36(8): 166-175.
分类方式 | 微塑料种类 | 主要来源 |
---|---|---|
粒径大小 | 纳米塑料(粒径<1 μm)[ | — |
小型微塑料(粒径<1 mm) | — | |
大型微塑料(1 mm<粒径<5 mm) | — | |
形状 | 规则颗粒微塑料 | — |
不规则多种形状微塑料 | — | |
产生途径 | 初级微塑料 | 工业生产[ |
次级微塑料 | 初级微塑料分解而来[ | |
进入水体的不同来源 | 直接来源微塑料 | 塑料垃圾[ |
间接来源微塑料 | 化妆品中的添加成分[ |
分类方式 | 微塑料种类 | 主要来源 |
---|---|---|
粒径大小 | 纳米塑料(粒径<1 μm)[ | — |
小型微塑料(粒径<1 mm) | — | |
大型微塑料(1 mm<粒径<5 mm) | — | |
形状 | 规则颗粒微塑料 | — |
不规则多种形状微塑料 | — | |
产生途径 | 初级微塑料 | 工业生产[ |
次级微塑料 | 初级微塑料分解而来[ | |
进入水体的不同来源 | 直接来源微塑料 | 塑料垃圾[ |
间接来源微塑料 | 化妆品中的添加成分[ |
采样区域 | 微塑料丰度 | 微塑料分类方法 | 各组分含量(质量分数) | 检测 方法 | 参考文献 |
---|---|---|---|---|---|
印度 洋海域 | (1 029±1 134)个/m2 | 按成分划分 | 聚丙烯(PP)30 %、聚苯乙烯(PS)5 %、聚乙烯(PE)62 %、其他3 % | FTIR | [ |
太平洋中 西部 | (34 039±25 101)个/km2 | 按形状划分 | 纤维/长丝57.7 %、碎片18.3 %、其他24 % | 拉曼 光谱 | [ |
按粒径划分 | 1~2.5 mm 35.1 %、0.5~1 mm 28.5 %、其他36.4 % | ||||
按颜色划分 | 白色33.8 %、透明31.0 %、绿色24.6 %、其他10.6 % | ||||
按成分划分 | PP 39.1 %、聚甲基丙烯酸甲酯16.2 %、PE 14.1 %、PE 14.2 %、其他 16.4 % | ||||
大西洋 | 15 283~1 007 872 个/km2 | 按形状划分(加那利群岛地区) | 纤维27.4 %、碎片57.3 %、其他15.3 % | FTIR | [ |
按形状划分(马德拉地区) | 纤维30 %、碎片47.5 %、其他22.5 % | ||||
按形状划分(亚速尔群岛地区) | 纤维:54 %、碎片:34.9 %、其他:11.1% | ||||
北极海冰 | 8~41 个/L | 按粒径划分 | <0.5 mm 85 %、0.5~1 mm 11.8 %、1~1.4 mm 3.0 % | FTIR | [ |
中国南海 | (0.045±0.093)个/m3 | 按成分划分 | 醇酸树脂(AK)22.5 %、聚己内酯(PCL)20.9 %、其他56.9 % | FTIR | [ |
中国东海 | (0.167±0.138)个/m3 | 按形状划分(长江入海口) | 纤维79.1 %、薄片9.1 %、小颗粒11.6 %、珠粒0.2 % | - | [ |
按形状划分(中国东海海岸线) | 纤维83.2 %、薄片2.1 %、颗粒14.7 % | ||||
按粒径划分(长江入海口) | 0.5~1 mm 67.0 %、1~2.5 mm 28.4 %、2.5~5 mm 4.4 %、 >5 mm 0.2 % | ||||
按粒径划分(中国东海海岸线) | 0.5~1 mm 35.4 %、1~2.5 mm 29.9 %、2.5~5 mm 25.9 %、>5 mm 8.8 % | ||||
中国渤海 | (0.33±0.34)个/m3 | 按粒径划分 | >2.5 mm 7 %、0.5~2.5 mm 38 %、0.3~0.5 mm 55 % | FTIR | [ |
按成分划分 | PP 51 %、PS 29 %、其他20 % | ||||
中国黄海 | (545±282)个/m3 | 按粒径划分 | <0.5 mm(表层海水) 35.7 %~83.5 %、<0.5 mm(沉淀物) 60.0 %~96.6 % | FTIR | [ |
按形状划分(表层海水) | 薄片58.1 %±24.9 %、纤维39.1±22.3 %、珠粒58.1 %±24.9 %、小颗粒2.1±3.4 % | ||||
按形状划分(沉淀物) | 薄片61.4 %±14.2 %、纤维35.1 %±11.6 %、小颗粒3.6 %±7.4 % | ||||
按颜色划分 | 白色(表层海水)2.4 %~14.8 %、透明(沉淀物)50.0 %~88.9 % | ||||
按成分划分(表层海水) | PE 77.8 %、PP 11.1 %、其他11.1% | ||||
按成分划分(沉淀物) | PE 44.5 %、PP 33.3 %、其他22.2% | ||||
中国青藏高原 | 483~967 个/m3 | 按形状划分 | 纤维(地表水)69.0 %~92.7 %、纤维(沉淀物)53.8 %~80.6 % | 拉曼光谱 | [ |
按粒径划分 | <1 mm超过70 %、>1 mm不到30 % | ||||
美国五大湖 | 43×103 个/km2 | 按粒径划分 | 0.355~0.999 mm 81 %、1.000~4.749 mm 17 %、>4.75 mm 2 % | SEM/EDS、FTIR | [ |
按形状划分 | 碎片42.2 %、珠粒48.1 %、其他9.7 % | ||||
意大利伊索湖 | 4×103~9.3×105个/km2 | 按成分划分 | PE 41.3 %、PP 5.4 %、PS 1.8 %、发泡聚苯乙烯(EPS) 24.6 %、其他 26.9 % | FTIR | [ |
意大利马焦雷湖 | 9×103~7.3×105 个/km2 | 按成分划分 | PE 48.0 %、PP 17.2 %、PS 4.9 %、EPS 9.0 %、其他20.9 % | FTIR | [ |
意大利加尔达湖 | 1.3×103~8.4×105 个/km2 | 按成分划分 | PE 45.4 %、PP 21.8 %、PS 1.9 %、EPS 21.7 %、其他9.2 % | FTIR | [ |
采样区域 | 微塑料丰度 | 微塑料分类方法 | 各组分含量(质量分数) | 检测 方法 | 参考文献 |
---|---|---|---|---|---|
印度 洋海域 | (1 029±1 134)个/m2 | 按成分划分 | 聚丙烯(PP)30 %、聚苯乙烯(PS)5 %、聚乙烯(PE)62 %、其他3 % | FTIR | [ |
太平洋中 西部 | (34 039±25 101)个/km2 | 按形状划分 | 纤维/长丝57.7 %、碎片18.3 %、其他24 % | 拉曼 光谱 | [ |
按粒径划分 | 1~2.5 mm 35.1 %、0.5~1 mm 28.5 %、其他36.4 % | ||||
按颜色划分 | 白色33.8 %、透明31.0 %、绿色24.6 %、其他10.6 % | ||||
按成分划分 | PP 39.1 %、聚甲基丙烯酸甲酯16.2 %、PE 14.1 %、PE 14.2 %、其他 16.4 % | ||||
大西洋 | 15 283~1 007 872 个/km2 | 按形状划分(加那利群岛地区) | 纤维27.4 %、碎片57.3 %、其他15.3 % | FTIR | [ |
按形状划分(马德拉地区) | 纤维30 %、碎片47.5 %、其他22.5 % | ||||
按形状划分(亚速尔群岛地区) | 纤维:54 %、碎片:34.9 %、其他:11.1% | ||||
北极海冰 | 8~41 个/L | 按粒径划分 | <0.5 mm 85 %、0.5~1 mm 11.8 %、1~1.4 mm 3.0 % | FTIR | [ |
中国南海 | (0.045±0.093)个/m3 | 按成分划分 | 醇酸树脂(AK)22.5 %、聚己内酯(PCL)20.9 %、其他56.9 % | FTIR | [ |
中国东海 | (0.167±0.138)个/m3 | 按形状划分(长江入海口) | 纤维79.1 %、薄片9.1 %、小颗粒11.6 %、珠粒0.2 % | - | [ |
按形状划分(中国东海海岸线) | 纤维83.2 %、薄片2.1 %、颗粒14.7 % | ||||
按粒径划分(长江入海口) | 0.5~1 mm 67.0 %、1~2.5 mm 28.4 %、2.5~5 mm 4.4 %、 >5 mm 0.2 % | ||||
按粒径划分(中国东海海岸线) | 0.5~1 mm 35.4 %、1~2.5 mm 29.9 %、2.5~5 mm 25.9 %、>5 mm 8.8 % | ||||
中国渤海 | (0.33±0.34)个/m3 | 按粒径划分 | >2.5 mm 7 %、0.5~2.5 mm 38 %、0.3~0.5 mm 55 % | FTIR | [ |
按成分划分 | PP 51 %、PS 29 %、其他20 % | ||||
中国黄海 | (545±282)个/m3 | 按粒径划分 | <0.5 mm(表层海水) 35.7 %~83.5 %、<0.5 mm(沉淀物) 60.0 %~96.6 % | FTIR | [ |
按形状划分(表层海水) | 薄片58.1 %±24.9 %、纤维39.1±22.3 %、珠粒58.1 %±24.9 %、小颗粒2.1±3.4 % | ||||
按形状划分(沉淀物) | 薄片61.4 %±14.2 %、纤维35.1 %±11.6 %、小颗粒3.6 %±7.4 % | ||||
按颜色划分 | 白色(表层海水)2.4 %~14.8 %、透明(沉淀物)50.0 %~88.9 % | ||||
按成分划分(表层海水) | PE 77.8 %、PP 11.1 %、其他11.1% | ||||
按成分划分(沉淀物) | PE 44.5 %、PP 33.3 %、其他22.2% | ||||
中国青藏高原 | 483~967 个/m3 | 按形状划分 | 纤维(地表水)69.0 %~92.7 %、纤维(沉淀物)53.8 %~80.6 % | 拉曼光谱 | [ |
按粒径划分 | <1 mm超过70 %、>1 mm不到30 % | ||||
美国五大湖 | 43×103 个/km2 | 按粒径划分 | 0.355~0.999 mm 81 %、1.000~4.749 mm 17 %、>4.75 mm 2 % | SEM/EDS、FTIR | [ |
按形状划分 | 碎片42.2 %、珠粒48.1 %、其他9.7 % | ||||
意大利伊索湖 | 4×103~9.3×105个/km2 | 按成分划分 | PE 41.3 %、PP 5.4 %、PS 1.8 %、发泡聚苯乙烯(EPS) 24.6 %、其他 26.9 % | FTIR | [ |
意大利马焦雷湖 | 9×103~7.3×105 个/km2 | 按成分划分 | PE 48.0 %、PP 17.2 %、PS 4.9 %、EPS 9.0 %、其他20.9 % | FTIR | [ |
意大利加尔达湖 | 1.3×103~8.4×105 个/km2 | 按成分划分 | PE 45.4 %、PP 21.8 %、PS 1.9 %、EPS 21.7 %、其他9.2 % | FTIR | [ |
分类 | 处理工艺 | 原理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
物理去除技术 | 过滤 | 截留、重力分离、膜分离 | 能耗低、分离率高 | 小粒径微塑料去除效果差 | [ |
磁分离 | 效率高、无二次污染 | 去除率较低 | [ | ||
吸附 | 对小粒径微塑料去除能力较高 | 去除率随丰度增高而降低 | [ | ||
溶胶⁃凝胶 | 不受水体pH值影响 | 去除适应性研究有待深入 | [ | ||
密度分离 | 工艺简单 | 部分饱和盐溶液价格偏高 | [ | ||
化学去除 技术 | 光化学氧化 | 氧化/还原降解、光化学老化、电解/化学絮凝 | 成本低、环境友好 | 部分工艺需紫外线光源 | [ |
混凝 | 经济节能、对环境无污染 | 小粒径微塑料去除能力差 | [ | ||
高级氧化 | 降解产物毒性低 | 需在密闭实验环境下进行 | [ | ||
生物降解 技术 | 真菌降解 | 利用生物代谢降解、同化塑料高分子 | 效率高、运行成本低、无二次污染 | 处理效率不稳定,对环境依赖性大 | [ |
细菌降解 | |||||
联用技术 | 超滤⁃混凝 | 物化去除结合生物降解 | 去除效率高 | 设备成本较高,操作复杂 | [ |
膜生物反应器 | 抗冲击能力强、控制灵活 | 容易形成膜污染 | [ |
分类 | 处理工艺 | 原理 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
物理去除技术 | 过滤 | 截留、重力分离、膜分离 | 能耗低、分离率高 | 小粒径微塑料去除效果差 | [ |
磁分离 | 效率高、无二次污染 | 去除率较低 | [ | ||
吸附 | 对小粒径微塑料去除能力较高 | 去除率随丰度增高而降低 | [ | ||
溶胶⁃凝胶 | 不受水体pH值影响 | 去除适应性研究有待深入 | [ | ||
密度分离 | 工艺简单 | 部分饱和盐溶液价格偏高 | [ | ||
化学去除 技术 | 光化学氧化 | 氧化/还原降解、光化学老化、电解/化学絮凝 | 成本低、环境友好 | 部分工艺需紫外线光源 | [ |
混凝 | 经济节能、对环境无污染 | 小粒径微塑料去除能力差 | [ | ||
高级氧化 | 降解产物毒性低 | 需在密闭实验环境下进行 | [ | ||
生物降解 技术 | 真菌降解 | 利用生物代谢降解、同化塑料高分子 | 效率高、运行成本低、无二次污染 | 处理效率不稳定,对环境依赖性大 | [ |
细菌降解 | |||||
联用技术 | 超滤⁃混凝 | 物化去除结合生物降解 | 去除效率高 | 设备成本较高,操作复杂 | [ |
膜生物反应器 | 抗冲击能力强、控制灵活 | 容易形成膜污染 | [ |
1 | THOMPSON R C, MOORE C J, SVOM SAAL F,et al.Plastics,the environment and human health:current consensus and future trends[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences,2009,364(1 526):2 153⁃2 166. |
2 | CARPENTER E J, ANDERSON S J, HARVEY G R,et al.Polystyrene spherules in coastal waters[J].Science,1972,178(4 062):749⁃750. |
3 | 贾静.微塑料在水生食物链中的富集及毒性效应研究[D].大连:大连海事大学,2018. |
4 | THOMPSON R C, OLSEN Y, PETALMITCHELL R.Lost at sea:where is all the plastic?[J].Science,2004,304:838. |
5 | BROWNE M A, GALLOWAY T S, THOMPSON R G.Spatial patterns of plastic debris along estuarine shorelines[J].Environmental Science & Technology,2010,44(9):3 404⁃3 409. |
6 | BOERGER C M, LATTIN G L, MOORE S L,et al.Plastic ingestion by planktivorous fishes in the north pacific central gyre[J].Marine Pollution Bulletin,2010,60(12):2 275⁃2 278. |
7 | LI J, LIU H, CHEN J P.Microplastics in freshwater systems:a review on occurrence,environmental effects,and methods for microplastics detection[J].Water Research,2018,137:362⁃374. |
8 | SHARMA S, CHATTERJEE S.Microplastic pollution,a threat to marine ecosystem and human health:a short review[J].Environmental Science and Pollution Research,2017,24(27):21 530⁃21 547. |
9 | PRATA J C, COSTA J P D, GIRAO A V,et al.Identifying a quick and efficient method of removing organic matter without damaging microplastic samples[J].Science of the Total Environment,2019,686(10):131⁃139. |
10 | TURNER A, HOLMES L.Distribution and characteristics of beached plastic production pellets on the island of malta (central mediterranean)[J].Marine Pollution Bulletin,2011,62:377⁃381. |
11 | 周倩,章海波,李远,等.海岸环境中微塑料污染及其生态效应研究进展[J].科学通报,2015,60(33):3 210⁃3 220. |
ZHOU Q, ZHANG H B, LI Y,et al.Progress on microplastics pollution and its ecological effects in the coastal environment[J].Chinese Science Bulletin,2015,60(33):3 210⁃3 220. | |
12 | XU S, MA J, JI R,et al.Microplastics in aquatic environments:occurrence,accumulation,and biological effects[J].Science of the Total Environment,2020,703:134699. |
13 | 陈彪,汪羚,李达,等.水环境中的微塑料及其生态效应[J].生态毒理学报,2019,14(1):30⁃40. |
CHEN B, WANG L, LI D,et al.Microplastics in water environment and their ecological effects[J].Asian Journal of Ecotoxicology,2019,14(1):30⁃40. | |
14 | BALDWIN A K, CORSI S R, MASON S A.Plastic debris in 29 great lakes tributaries:relations to watershed attributes and hydrology[J].Environmental Science & Technology,2016,50(19):10 377⁃10 385. |
15 | SONG Y K, HONG S H, JANG M,et al.Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type[J].Environmental Science & Technology,2017,51(8):4 368⁃4 376. |
16 | MA Y, HUANG A, CAO S, et al.Effects of nanoplastics and microplastics on toxicity, bioaccumulation and environmental fate of phenanthrene in fresh water[J].Environmental Pollution.2016, 219:166⁃173. |
17 | MATTHEW C A, PENNIE L A, CLAUDIA H B,et al.Microplastics as contaminants in the marine environment:a review[J].Marine Pollution Bulletin,2011,62(12):2 588⁃2 597. |
18 | BROWNE M, NIVEN J, GALLOWAY T,et al.Ingested microplastic moves pollutants and additives into marine worms compromising functions linked to health and biodiversity[J].Current Biology,2013,23:2 388⁃2 392. |
19 | 汤爱琪.磁性微生物絮凝剂的制备及其对微塑料的吸附效能[D].哈尔滨:哈尔滨工业大学,2020. |
20 | ROCHMAN C M, BROWNE M A, HALPERN B S,et al.Policy:classify plastic waste as hazardous[J].Nature,2013,494(7 436):169. |
21 | 赵新月.海岸带环境中大塑料和微塑料的组成,鉴别及来源研究[D].烟台:中国科学院烟台海岸带研究所,2019. |
22 | JAMBECK J R, GEYER R, WILCOX C,et al.Marine pollution.Plastic waste inputs from land into the ocean[J].Science,2015,347:768. |
23 | FENDALL L S, MARY A S.Contributing to marine pollution by washing your face:micro⁃plastics in facial clean⁃sers[J].Marine Pollution Bulletin,2009,58:1 225⁃1 228. |
24 | RYAN P G, MOORE C J, VAN FRANEKER J A,et al. Monitoring the abundance of plastic debris in the marine environment[J].Philosophical Transactions of the Royal Society of London. Series B, Biological sciences,2009,364:1 999⁃2 012. |
25 | ZHANG K, XIONG X, HU H J,et al.Occurrence and characteristics of microplastic pollution in Xiangxi bay of three gorgesreservoir,China[J].Environmental Science & Technology,2017,51(7):3 794⁃3 801. |
26 | SHIMA Z, NEALE P A, LEUSCH F D L.Wastewater treatment plant effluent as a source of microplastics:review of the fate,chemical interactions and potential risks to aquatic organisms[J]. Water Science and Technology,2016,74(10):2 253⁃2 269. |
27 | CARR S A, LIU J, TESORO A G.Transport and fate of microplastic particles in wastewater treatment plants[J].Water Research,2016,50(6):174⁃182. |
28 | LAW K L, THOMPSON R C. Microplastics in the seas[J].Science,2014,345(6 193):144⁃145. |
29 | DESFORGES J P W, GALBRAITH M, DANGERFIELD N,et al.Widespread distribution of microplastics in subsurface seawater in the NE Pacific ocean[J].Marine Pollution Bulletin,2014,79(1/2):94⁃99. |
30 | COLE M, LINDEQUE P, HALSBAND C,et al.Microplastics as contaminants in the marine environment:a review[J].Marine Pollution Bulletin,2011,62(12):2 588⁃2 597. |
31 | DAVIDSON T M.Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic[J].Marine Pollution Bulletin,2012,64(9):1 821⁃1 828. |
32 | 李珊,张岚,陈永色,等.饮用水中微塑料检测技术研究进展[J].净水技术,2019,38(4):1⁃8. |
LI S, ZHANG L, CHEN Y Y,et al.Research progress on detection technology of microplastics in drinking water[J].Water Purification Technology,2019,38(4):1⁃8. | |
33 | IMHOF H K, SIGL R, BRAUER E,et al.Spatial and temporal variation of macro⁃,meso⁃ and microplastic abundance on a remote coral island of the maldives,Indian ocean[J].Marine Pollution Bulletin,2017,116(1/2):340⁃347. |
34 | WANG S, CHEN H, ZHOU X,et al.Microplastic abundance,distribution and composition in the midwest pacific ocean[J].Environmental Pollution,2020,13:114125. |
35 | HERRERA A, RAYMOND E, MARTÍNEZ I,et al.First evaluation of neustonic microplastics in the macaronesian region,NE Atlantic[J].Marine Pollution Bulletin,2020,153:110999. |
36 | GEILFUS N X, MUNSON K M, SOUSA J,et al.Distribution and impacts of microplastic incorporation within sea ice[J].Marine Pollution Bulletin,2019,145:463⁃473. |
37 | CAI M, HE H, LIU M,et al.Lost but can't be neglected:huge quantities of small microplastics hide in the south China sea[J].Science of the Total Environment,2018,633:1 206⁃1 216. |
38 | ZHAO S, ZHU L, WANG T,et al.Suspended microplastics in the surface water of the yangtze estuary system,China:first observations on occurrence,distribution[J].Marine Pollution Bulletin,2014, 86(1/2):562⁃568. |
39 | ZHANG W, ZHANG S, WANG J,et al.Microplastic pollution in the surface waters of the bohai sea,China[J].Environmental Pollution,2017,231:541⁃548. |
40 | ZHU L, BAI H, CHEN B,et al.Microplastic pollution in north yellow sea,China:observations on occurrence,distribution and identification[J].Science of the Total Environment,2018,636:20⁃29. |
41 | JIANG C, YIN L, LI Z,et al.Microplastic pollution in the rivers of the Tibet plateau[J].Environmental Pollution,2019,249:91⁃98. |
42 | ERIKSEN M, MASON S, WILSON S,et al.Microplastic pollution in the surface waters of the laurentian great lakes[J].Marine Pollution Bulletin,2013,77(1/2):177⁃182. |
43 | SIGHICELLI M, PIETRELLI L, LECCE F,et al.Microplastic pollution in the surface waters of Italian subalpine lakes[J].Environmental Pollution,2018,236:645⁃651. |
44 | FOK L, LAM T W L, LI H X,et al.A meta⁃analysis of methodologies adopted by microplastic studies in China[J].Science of The Total Environment,2020,718:135371. |
45 | TALVITIE J, MIKOLA A, KOISTINEN A,et al.Solutions to microplastic pollution⁃removal of microplastics from wastewater effluent with advanced wastewater treatment technologies[J]. Water Research,2017,123:401⁃407. |
46 | LI L C, XU G R, YU H R.Dynamic membrane filtration:formation,filtration,cleaning,and applications[J].Chemical Engineering & Technology,2018,41(1):7⁃18. |
47 | LI L C, XU G R, YU H R,et al.Dynamic membrane for micro⁃particle removal in wastewater treatment:performance and influencing factors[J].Science of the Total Environment,2018,627: 332⁃340. |
48 | WANG Z F, LIN T, CHEN W.Occurrence and removal of microplastics in an advanced drinking water treatment plant(ADWTP)[J].Science of the Total Environment,2020,700:134520. |
49 | WANG Z H, SEDIGHI M, LEA⁃LANGTON A.Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms[J].Water Research,2020,184:116165. |
50 | ZIAJAHROMI S, NEALE P A, RINTOUL L,et al.Wastewater treatment plants as a pathway for microplastics:development of a new approach to sample wastewater⁃based microplastics [J].Water Research,2017,112:93⁃99. |
51 | 郑利兵,佟娟,魏源送,等.磁分离技术在水处理中的研究与应用进展[J].环境科学学报,2016,36(9):3 103⁃3 117. |
ZHENG L B, TONG J, WEI Y S, et al.The progress of magnetic separation technology in water treatment[J].Acta Scientiae Circumstantiae,2016,36(9):3 103⁃3 117. | |
52 | GRBIC J, NGUYEN B, GUO E,et al.Magnetic extraction of microplastics from environmental samples[J].Environmental Science & Technology Letters,2019,6(2):68⁃72. |
53 | 姜伟楠,隋倩,吕树光.利用Fe3O4纳米颗粒磁分离去除水中小粒径微塑料[J].中国环境科学,2021,41(8):3 601⁃3 606. |
JIANG W N, SUI Q, LV S G.Removal of small⁃sized microplastics from aqueous solution with Fe3O4 nanoparticles by magnetic separation[J].China Environmental Science,2021,41(8):3 601⁃3 606. | |
54 | YUAN F, YUE L, ZHAO H,et al.Study on the adsorption of polystyrene microplastics by three⁃dimensional reduced graphene oxide[J].Water Science and Technology,2020,81(10):2 163⁃2 175. |
55 | TIWA R I E, SINGH N, KHANDELWAL N,et al.Application of Zn/Al layered double hydroxides for the removal of nano⁃scale plastic debris from aqueous systems[J].Journal of Hazardous Materials,2020,397:122769. |
56 | 石双双.磺胺嘧啶和环丙沙星在微塑料上吸附行为的研究[D].大连:大连海事大学,2020. |
57 | SOLEIMANI DORCHEH A, ABBSAI M H.Silica aerogel;synthesis,properties and characterization[J].Journal of Materials Processing Technology,2008,199(1/3):10⁃26. |
58 | HERBORT A F, STURM M T, SCHUHEN K.A New approach for the agglomeration and subsequent removal of polyethylene,polypropylene,and mixtures of both from freshwater systems:a case study [J].Environmental Science and Pollution Research,2018,25(15):15 226⁃15 234. |
59 | 汤庆峰,李琴梅,魏晓晓,等.环境样品中微塑料分析技术研究进展[J].分析测试学报,2019,38(8):1 009⁃1 019. |
TANG Q F, LI Q M, WEI X X,et al.Progress on research of analysis techniques for microplastics in environmental samples[J].Journal of Instrumental Analysis,2019,38(8):1 009⁃1 019. | |
60 | HE B, GOONETILLEKE A, AYOKO G A,et al.Abundance,distribution patterns,and identification of microplastics in brisbane river sediments,Australia[J].Science of the Total Environment,2020,700:134467. |
61 | WEN X F, DU C Y, XU P,et al.Microplastic pollution in surface sediments of urban water areas in changsha,China:abundance,composition,surface textures[J].Marine Pollution Bulletin,2018,136:414⁃423. |
62 | ALEX C, IRENE G E, ANTHONY R.Distribution,abundance,and diversity of microplastics in the upper st.lawrence river[J].Environmental Pollution,2020,260:113994. |
63 | KALOGERAKIS N, KARKANORACHAKI K, KALOGERAKIS G C,et al.Microplastics generation: onset of fragmentation of polyethylene films in marine environment mesocosms[J].Frontiers in Marine Science,2017,4:84. |
64 | ZHU K C, JIA H Z, SUN Y J,et al.Long⁃term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments:roles of reactive oxygen species[J].Water Research,2020,173:115564. |
65 | ANDRADY A L, HAMID S H, HU X,et al.Effects of increased solar ultraviolet radiation on materials[J].Journal of Photochemistry and Photobiology B:Biology, 1998,46(1/3):96⁃103. |
66 | NABI I, BACHA A U R, LI K,et al.Complete photocatalytic mineralization of microplastic on TiO2 nanoparticle film[J].Science,2020,23 (7):101326. |
67 | UEKERT T, KASAP H, REISNER E.Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst[J].Journal of the American Chemical Society,2019,141(38) :15 201⁃15 210. |
68 | 李奉翠,刘海成,薛婷婷,等.地表水中聚乙烯微塑料的絮凝去除机制[J].人民黄河,2021,43(10):97⁃101. |
LI F C, LIU H C, XUE T T,et al.Mechanism of polyethy⁃lene microplastics removal by flocculation in surface water[J].Yellow River,2021,43(10):97⁃101. | |
69 | LAPOINTE M, FARNER J M, HERNANDEZ L M,et al.Understanding and improving microplastic removal du⁃ring water treatment:impact of coagulation and flocculation[J].Environmental Science and Technology, 2020, 54(14): 8 719⁃8 727. |
70 | 王月.混凝⁃沉淀工艺去除水中微塑料颗粒的研究[D].哈尔滨:哈尔滨工业大学,2020. |
71 | 刘静,张艳萍,周东星,等.絮凝法去除生活废水中微塑料研究[J].应用化工,2021,50(7):1 789⁃1 794. |
LIU J, ZHANG Y P, ZHOU D X,et al.Simulation experiment of microplastics removal from domestic wastewater by flocculation[J].Applied Chemical Industry,2021,50(7):1 789⁃1 794. | |
72 | MA B, XUE W, DING Y,et al.Removal characteristics of microplastics by Fe⁃based coagulants during drinking water treatment[J].Journal of Environmental Sciences,2019,78: 267⁃275. |
73 | KANG J, ZHOU L, DUAN X,et al.Degradation of cosmetic microplastics via functionalized carbon nanosprings[J].Matter,2019,1(3):745⁃758. |
74 | 彭瑞婷,夏孟丽,茹家康,等.聚氨酯塑料的微生物降解[J].生物工程学报, 2018,34(9):1 398⁃1 409. |
PENG R T, XIA M L, RU J K,et al.Microbial degradation of polyurethane plastics[J].Chinese Journal of Biotechnology,2018,34(9):1 398⁃1 409. | |
75 | YAN F, WEI R, CUI Q,et al.Thermophilic whole⁃cell degradation of polyethylene terephtha⁃late using engineered clostridium thermocellum[J].Microbial Biotechnology,2021,14(2):374⁃385. |
76 | TOURNIER V, TOPHAM C M, GILLES A,et al.An engineered PET depolymerase to break down and recycle plastic bottles[J].Nature,2020,580 (7 802) :216⁃219. |
77 | 孙宇辰.微生物主导的环境中硝酸盐和微塑料去除研究[D].天津:天津工业大学,2021. |
78 | MA B W, XUE W J, HU C Z,et al.Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment[J].Chemical Engineering Journal,2019,359:159⁃167. |
79 | 高宇轩.城市污水处理过程中微塑料污染及去除研究[D].太原:山西大学,2021. |
80 | 于翔,李捷,罗凡.AAOA⁃MBR工艺在工程中的应用分析[J].水处理技术,2021,47(3),133⁃136. |
YU X, LI J, LUO F.Applied analysis of AAOA⁃MBR process in actual wastewater treatment project[J].Technology of Water Treatment,2021,47(3),133⁃136. | |
81 | WANG Z H, YIN X L, WAN L,et al.Dynamics of nitrogen,phosphorus, and organic pollutant losses from a small watershed in the drinking⁃water sourceprotection area in Guiyang city of southern China[J].Environmental Science and Pollution Research,2019,26(2),1 791⁃1 808. |
82 | 陈翔,侯晓庆,贾海涛,等.MBR工艺在地埋式污水处理厂的应用[J].中国水利,2016,1,66⁃68. |
CHEN X, HOU X Q, JIA H D,et al.Application of MBR process in buried sewage treatment plant[J].China Water Resources,2016,1,66⁃68. |
[1] | GUO Yuwen, ZENG Bei, GAO Xing, WANG Pan, REN Lianhai. Effect of PET microplastics on performance of co⁃digestion of sewage sludges and food wastes [J]. China Plastics, 2022, 36(7): 51-60. |
[2] | TANG Qingfeng, LI Qinmei, WANG Jiamin, ZHANG Yuxiang, GAO Xia. Identification and Analysis of Microplastics by Micro Fourier Transform Infrared Spectroscopy [J]. China Plastics, 2021, 35(8): 172-180. |
[3] | LI Yuzhu, YAO Lihui, YE Shiqiang, LYU Guoyong, LIU Panpan, XU Longfei, QIU Dan. Research Progress on Degradation Performance of Biodegradable Materials in Water Environment [J]. China Plastics, 2021, 35(7): 103-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||