京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (8): 131-138.DOI: 10.19491/j.issn.1001-9278.2025.08.021
• Review • Previous Articles Next Articles
CHENG Wei1(), ZHAO Yongqiang1,2(
), PANG Jayao1, HE Yong2, YU Le1
Received:
2024-08-19
Online:
2025-08-26
Published:
2025-07-30
CLC Number:
CHENG Wei, ZHAO Yongqiang, PANG Jayao, HE Yong, YU Le. Research progress in surface quality prediction control in fused deposition modeling technology based on machine learning[J]. China Plastics, 2025, 39(8): 131-138.
类型 | 突出优势 | 相对劣势 |
---|---|---|
ANN | 能捕获复杂的非线性关系;能处理各种输入类型;适合大数据 | 需要超参数调优;容易过度拟合;缺乏透明度 |
前馈反向传播(FFBP) | 高效的参数更新;可扩展性强;全局优化 | 对超参数敏感;需要大量标记数据;存在梯度消失和爆炸的问题,需初始化和正则化方法来解决 |
自适应神经模糊推理系统(ANFIS) | 可解释性强;高效的计算能力;较强的自适应性和泛化能力 | 对初始条件敏感;需要大量数据;模型复杂性,包括模糊推理和神经网络两个部分 |
多层感知器 | 非线性映射和特征学习能力强 | 训练复杂度高、容易过拟合和参数调整难度大 |
BMLP | 提高整体模型的泛化能力,减少过拟合;预测结果更加稳定和鲁棒;并行化处理,训练效率更高 | 计算资源需求高;难以解释;基学习器过多 |
KB⁃ANN | 可解释性更强;模型收敛更快,预测精度更高,特别是在数据量有限的情况下;能够处理复杂和高维的问题 | 计算资源需求高;知识获取困难;实施和调试过程可能更加困难 |
类型 | 突出优势 | 相对劣势 |
---|---|---|
ANN | 能捕获复杂的非线性关系;能处理各种输入类型;适合大数据 | 需要超参数调优;容易过度拟合;缺乏透明度 |
前馈反向传播(FFBP) | 高效的参数更新;可扩展性强;全局优化 | 对超参数敏感;需要大量标记数据;存在梯度消失和爆炸的问题,需初始化和正则化方法来解决 |
自适应神经模糊推理系统(ANFIS) | 可解释性强;高效的计算能力;较强的自适应性和泛化能力 | 对初始条件敏感;需要大量数据;模型复杂性,包括模糊推理和神经网络两个部分 |
多层感知器 | 非线性映射和特征学习能力强 | 训练复杂度高、容易过拟合和参数调整难度大 |
BMLP | 提高整体模型的泛化能力,减少过拟合;预测结果更加稳定和鲁棒;并行化处理,训练效率更高 | 计算资源需求高;难以解释;基学习器过多 |
KB⁃ANN | 可解释性更强;模型收敛更快,预测精度更高,特别是在数据量有限的情况下;能够处理复杂和高维的问题 | 计算资源需求高;知识获取困难;实施和调试过程可能更加困难 |
类型 | 突出优势 | 相对劣势 |
---|---|---|
PSO⁃BFO | 收敛速度;初始条件和参数设置的敏感性降低;非线性问题解决能力强 | 计算复杂度高;参数设置复杂;可能陷入局部最优解 |
TLBO | 无参数调节;全局搜索能力强;简单易实现 | 依赖于初始种群;效率相对低 |
NSGA II | 多目标优化能力强;全局搜索能力强;鲁棒性强 | 计算复杂度高;参数调整复杂;收敛速度慢 |
ANN⁃SOS | 非线性建模能力、全局搜索能力及适应性都较强 | 对数据需求量大、参数调整复杂、实现难度大 |
ANN⁃PSO | 非线性建模能力强;全局优化能力强;预测精度高 | 计算复杂度高;参数调整复杂;收敛速度不稳定;实现复杂 |
ACS⁃SDBN | 高效的超参数优化;预测精度高;泛化能力强; | 数据需求大;实现难度高;依赖于初始数据 |
类型 | 突出优势 | 相对劣势 |
---|---|---|
PSO⁃BFO | 收敛速度;初始条件和参数设置的敏感性降低;非线性问题解决能力强 | 计算复杂度高;参数设置复杂;可能陷入局部最优解 |
TLBO | 无参数调节;全局搜索能力强;简单易实现 | 依赖于初始种群;效率相对低 |
NSGA II | 多目标优化能力强;全局搜索能力强;鲁棒性强 | 计算复杂度高;参数调整复杂;收敛速度慢 |
ANN⁃SOS | 非线性建模能力、全局搜索能力及适应性都较强 | 对数据需求量大、参数调整复杂、实现难度大 |
ANN⁃PSO | 非线性建模能力强;全局优化能力强;预测精度高 | 计算复杂度高;参数调整复杂;收敛速度不稳定;实现复杂 |
ACS⁃SDBN | 高效的超参数优化;预测精度高;泛化能力强; | 数据需求大;实现难度高;依赖于初始数据 |
[1] | 高海亮,胡程,周宇强,等.3D打印零件的尺寸精度及控制[J].中国塑料,2023,37(08):79⁃85. |
GAO H L, HU C, ZHOU Y Q, et al. Research progress in ABS materials for 3D printing[J]. China Plastics, 2023, 37(08): 79⁃85. | |
[2] | Tamburrino F, Barone S, Paoli A, et al. Post⁃processing treatments to enhance additively manufactured polymeric parts: A review[J]. Virtual and Physical Prototyping, 2021, 16(2): 221⁃254. |
[3] | 龚强,金志明.基于模型算法的注塑制品质量预测控制研究进展[J].中国塑料, 2024, 38(04): 98⁃102. |
GONG Q, JIN Z M. Research progress in quality prediction and control of injection molded productsbased on model algorithms[J]. China Plastics, 2024, 38(04): 98⁃102. | |
[4] | Rajan K, Samykano M, Kadirgama K, et al. Fused deposition modeling: process, materials, parameters, properties, and applications[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(3): 1 531⁃1 570. |
[5] | Vyavahare Swapnil, Kumar Shailendra.Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling[J]. Rapid Prototyping Journal, 2020, 26(9):1 535–1 554. |
[6] | 潘丽娟,商正,贾桂红,等.熔融沉积制造表面粗糙度参数显著性及预测模型研究[J].图学学报,2020,41(04):593⁃598. |
PAN L J, SHANG Z, JIA G H, et al. Investigation of parameters significance and predicted model on surface roughness on fused deposition modeling[J].Journal of Graphics,2020,41(04):593⁃598. | |
[7] | Asadollahi⁃Yazdi E, Gardan J, Lafon P. Generic roughness meta⁃model in 3D printing by fused deposition modeling[J]. Progress in Additive Manufacturing, 2022: 1⁃12. |
[8] | Sumalatha M, Rao J N M, Reddy B S. Optimization of process parameters in 3D printing⁃fused deposition modeling using taguchi method[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021, 1112(1): 012009. |
[9] | Navangul G, Paul R, Anand S. Error minimization in layered manufacturing parts by stereolithography file modification using a vertex translation algorithm[J]. Journal of Manufacturing Science and Engineering, 2013, 135(3): 031006. |
[10] | Zha W, Anand S. Geometric approaches to input file modification for part quality improvement in additive manufacturing[J]. Journal of Manufacturing Processes, 2015, 20: 465⁃477. |
[11] | Nathaphan S, Trutassanawin W. Effects of process parameters on compressive property of FDM with ABS[J]. Rapid Prototyping Journal, 2021, 27(5): 905⁃917. |
[12] | 李卫飞.基于ANSYS仿真的FDM 3D打印成型件精度研究[D].武汉科技大学,2019. |
[13] | Wickramasinghe S, Do T, Tran P. FDM⁃based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12(7): 1529. |
[14] | Taufik M, Jain P K. Role of build orientation in layered manufacturing: a review[J]. International Journal of Manufacturing Technology and Management, 2013, 27(1/3): 47⁃73. |
[15] | Golhin A P, Tonello R, Frisvad J R, et al. Surface roughness of as⁃printed polymers: a comprehensive review[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3): 987⁃1 043. |
[16] | Turner B N, Strong R, Gold S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192⁃204. |
[17] | Turner B N, Gold S A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness[J]. Rapid Prototyping Journal, 2015, 21(3): 250⁃261. |
[20] | Bellehumeur C, Li L, Sun Q, et al. Modeling of bond formation between polymer filaments in the fused deposition modeling process[J]. Journal of manufacturing processes, 2004, 6(2): 170⁃178. |
[21] | Moorthy E S, Balasubramanian A, Kumaran P K S, et al. Effect of process parameters on tensile strength and surface quality of PLA⁃ABS part produced by fused deposition modeling[J]. Indian Journal of Engineering and Materials Sciences (IJEMS), 2021, 28(3): 300⁃310. |
[22] | Yang Y, Chen Y, Wei Y, et al. 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 2 079⁃2 095. |
[23] | Nidagundi V B, Keshavamurthy R, Prakash C P S. Studies on parametric optimization for fused deposition modelling process[J]. Materials Today: Proceedings, 2015, 2(4/5): 1 691⁃1 699. |
[24] | Nancharaiah T, Raju D R, Raju V R. An experimental investigation on surface quality and dimensional accuracy of FDM components[J]. Int J Emerg Technol, 2010, 1(2): 106⁃111. |
[25] | Wang P, Zou B, Xiao H, et al. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK[J]. Journal of Materials Processing Technology, 2019, 271: 62⁃74. |
[26] | Alsoufi M S, Elsayed A E. Surface roughness quality and dimensional accuracy—a comprehensive analysis of 100% infill printed parts fabricated by a personal/desktop cost⁃effective FDM 3D printer[J]. Materials Sciences and Applications, 2018, 9(01): 11. |
[27] | Moorthy E S, Balasubramanian A, Kumaran P K S, et al. Effect of process parameters on tensile strength and surface quality of PLA⁃ABS part produced by fused deposition modeling[J]. Indian Journal of Engineering and Materials Sciences (IJEMS), 2021, 28(3): 300⁃310. |
[28] | Horvath D, Noorani R, Mendelson M. Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE)[C]//Materials science forum. Trans Tech Publications Ltd, 2007, 561: 2 389⁃2 392. |
[29] | Wafa F, Abdulshahed A M. Prediction of surface roughness in additive manufacturing using artificial neural networks[C]//The International Journal of Engineering & Information Technology (IJEIT), Special issue for the international Eng Conf IECMU 2021,2021. |
[30] | Singh J, Goyal K K, Kumar R, et al. Development of artificial intelligence‐based neural network prediction model for responses of additive manufactured polylactic acid parts[J]. Polymer Composites, 2022, 43(8): 5 623⁃5 639. |
[31] | Malleswari V N, Manaswy G K, Pragvamsa P G. Prediction of surface roughness for fused deposition in fabricated work pieces by RSM and ANN technique[J]. Materials Today: Proceedings, 2023: 1⁃6. |
[32] | Mishra P, Sood S, Bharadwaj V, et al. Parametric modeling and optimization of dimensional error and surface roughness of fused deposition modeling printed polyethylene terephthalate glycol parts[J]. Polymers, 2023, 15(3): 546. |
[33] | Barrios J M, Romero P E. Decision tree methods for predicting surface roughness in fused deposition modeling parts[J]. Materials, 2019, 12(16): 2574. |
[34] | Molero E, Fernández J J, Rodríguez⁃Alabanda O, et al. Use of data mining techniques for the prediction of surface roughness of printed parts in polylactic acid (PLA) by fused deposition modeling (FDM): A practical application in frame glasses manufacturing[J]. Polymers, 2020, 12(4): 840. |
[35] | Wu D, Wei Y, Terpenny J. Surface roughness prediction in additive manufacturing using machine learning[C]//International manufacturing science and engineering conference. American Society of Mechanical Engineers, 2018, 51371: V003T02A018. |
[36] | Wu D, Wei Y, Terpenny J. Predictive modelling of surface roughness in fused deposition modelling using data fusion[J]. International Journal of Production Research, 2019, 57(12): 3 992⁃4 006. |
[37] | Li Z, Zhang Z, Shi J, et al. Prediction of surface roughness in extrusion⁃based additive manufacturing with machine learning[J]. Robotics and Computer⁃Integrated Manufacturing, 2019, 57: 488⁃495. |
[38] | Cerro A, Romero P E, Yiğit O, et al. Use of machine learning algorithms for surface roughness prediction of printed parts in polyvinyl butyral via fused deposition modeling[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(7): 2 465⁃2 475. |
[41] | Nagarajan H P N, Mokhtarian H, Jafarian H, et al. Knowledge⁃based design of artificial neural network topology for additive manufacturing process modeling: A new approach and case study for fused deposition modeling[J]. Journal of Mechanical Design, 2019, 141(2): 021705. |
[40] | 纪良波.熔融沉积成型有限元模拟与工艺优化研究[D].南昌大学,2011. |
[39] | Raju M, Gupta M K, Bhanot N, et al. A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters[J]. Journal of Intelligent Manufacturing, 2019, 30: 2 743⁃2 758. |
[42] | Rao R V, Rai D P. Optimization of fused deposition modeling process using teaching⁃learning⁃based optimization algorithm[J]. Engineering Science and Technology, an International Journal, 2016, 19(1): 587⁃603. |
[43] | Yang L, Li S, Li Y, et al. Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts[J]. Journal of Materials Engineering and Performance, 2019, 28: 169⁃182. |
[44] | Saad M S, Mohd Nor A, Abd Rahim I, et al. Optimization of FDM process parameters to minimize surface roughness with integrated artificial neural network model and symbiotic organism search[J]. Neural Computing and Applications, 2022, 34(20): 17 423⁃17 439. |
[45] | Shirmohammadi M, Goushchi S J, Keshtiban P M. Optimization of 3D printing process parameters to minimize surface roughness with hybrid artificial neural network model and particle swarm algorithm[J]. Progress in Additive Manufacturing, 2021, 6: 199⁃215. |
[46] | 董海,高秀秀,魏铭琦.基于深度学习的完全填充型熔融沉积成型零件质量预测方法[J].计算机集成制造系统,2023,29(01):200⁃211. |
DONG H, GAO X X, WEI M Q. Quality prediction method of fully filled fused deposition molding parts based on deep learning[J]. Computer Integrated Manufacturing Systems,2023,29(01):200⁃211. |
[1] | SHANG Yunlong, WANG Donghao, REN Zhibin. Storage stability of wet asphalt rubber: A comprehensive review [J]. China Plastics, 2025, 39(8): 75-82. |
[2] | HONG Xueyin, GAO Shang. Performance prediction of 3D printed parts based on machine learning methods [J]. China Plastics, 2025, 39(7): 72-79. |
[3] | LI Zeyang, LIU Shu, YAN Chenglin, SUN Jie, TANG Lei, WEI Mengjuan. Recycling processes, industrial applications, and identification characteristics of recycled polyester [J]. China Plastics, 2025, 39(6): 73-83. |
[4] | . Recycling processes, industrial applications, and identification characteristics of recycled polyester [J]. , 2025, 39(6): 73-83. |
[5] | CHEN Zhengnan, CHEN Binyi, HUANG An. Injection molding optimization of socket housing based on Modex3D [J]. China Plastics, 2025, 39(5): 70-76. |
[6] | WANG Chaoyuan, CHEN Xin, LIN Zeng, QI Jihao, PANG Zhiwei, SHA Jin. Optimization of structural parameters of single⁃screw metering section based on ANN surrogate model [J]. China Plastics, 2025, 39(3): 95-101. |
[7] | WANG Chen, HE Qi, LI Jingyao. Application of fused deposition modeling 3D printing in copying shape checker of automotive air conditioning connecting pipe [J]. China Plastics, 2025, 39(2): 40-44. |
[8] | WANG Shilin, ZHU Jiawei, ZHANG Peng, WEI Xingyue, YANG Huaguang, ZENG Xiankui, YANG Weimin, JIAN Ranran. Research progress in printing strength and molding rate based on FDM molding technology [J]. China Plastics, 2025, 39(1): 112-117. |
[9] | HU Kunming, WANG Di, JIN Biao, RUAN Jianbo, LIU Wanqiang, XIE Pengcheng. Optimization of simulation process for injection molding packaging of microelectronic component [J]. China Plastics, 2025, 39(1): 44-47. |
[10] | REN Qinghai, SUN Zudong, GENG Tie. Orthogonal precision design optimization of gas⁃assisted molding process parameters [J]. China Plastics, 2024, 38(7): 62-67. |
[11] | JIANG Shu, WANG Yang, ZHAI Menglei, LI Qingtao, HUANG Ming, LIU Chuntai. Structural design and overlay simulation of continuous carbon⁃fiber⁃reinforced B⁃pillar reinforced plate [J]. China Plastics, 2024, 38(4): 73-78. |
[12] | RONG Di, JIA Zhixin, LIU Lijun, LI Jiqiang, ZHAO Chuantao, GAO Lizhen, WANG Shaofeng. Analysis of influence factors on impact strength of epoxy/carbon⁃fiber⁃composite⁃molded products [J]. China Plastics, 2024, 38(1): 55-61. |
[13] | ZHOU Lei, ZHANG Lihua, CHEN Gingming, MAO Xu, CHEN Shuguang, QIU Jiancheng. Flow field analysis and design optimization of flow channel of degradable plastic sheet head [J]. China Plastics, 2023, 37(9): 90-95. |
[14] | ZHU Jiawei, PAN Wei, HUANG Shizheng, MOHINI Sain, YANG Weimin, JIAN Ranran. Research progress in high⁃speed and high⁃strength fused deposition molding technology [J]. China Plastics, 2023, 37(8): 118-126. |
[15] | WANG Lei, ZHAO Min, WENG Yunxuan, ZHANG Caili. Research progress in applications and performance prediction of machine learning in PLA processing [J]. China Plastics, 2023, 37(8): 127-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||