京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (10): 141-150.DOI: 10.19491/j.issn.1001-9278.2025.10.022
• Review • Previous Articles
QIN Huai1,2,3, YANG Kuan1,3,4(
), WU Jing1,2,3, WANG Shulei1, YANG Chenxin1
Received:2024-10-28
Online:2025-10-26
Published:2025-10-21
CLC Number:
QIN Huai, YANG Kuan, WU Jing, WANG Shulei, YANG Chenxin. Research progress in photo⁃crosslinked methacrylic acid hydrogel for wound repair[J]. China Plastics, 2025, 39(10): 141-150.
| 原料 | 简称 | 优点 | 缺点 | 应用领域 | 参考文献 |
|---|---|---|---|---|---|
| 透明质酸 | HA | 保湿、减少炎症、促进细胞增殖和迁移及新生血管生成 | 稳定性较差 易于降解 | 药物载体 伤口修复 软骨修复 成骨修复 齿科材料 | [ |
| 壳聚糖 | CS | 优异的止血能力、生物降解性、生物相容性、抗菌及细胞亲和力 | 溶解性差 机械强度不高 | 口腔组织 成骨修复 伤口修复 | [ |
| 胶原蛋白 | Col | 优异的止血能力、生物相容性 | 机械性较差 稳定性不好 | 伤口修复 成骨修复 软骨修复 | [ |
| 明胶 | Gel | 良好的水溶性、生物降解性和低免疫原性 | 降解速率 难以调控 | 药物递送 神经修复 心脏修复 软骨修复 成骨修复 伤口修复 | [ |
| 丝素蛋白 | SF | 可调的理化性质、生物相容性、低炎症性和优异的力学性能 | 原材料提取 及纯化复杂 | 成骨修复 软骨修复 脊髓修复 伤口修复 | [ |
| 聚乙二醇 | PEG | 生物相容性、保湿、低毒、低免疫原性、生物降解性、良好的水溶性 | 化学交联剂 不易去除 | 伤口修复 成骨修复 | [ |
| 原料 | 简称 | 优点 | 缺点 | 应用领域 | 参考文献 |
|---|---|---|---|---|---|
| 透明质酸 | HA | 保湿、减少炎症、促进细胞增殖和迁移及新生血管生成 | 稳定性较差 易于降解 | 药物载体 伤口修复 软骨修复 成骨修复 齿科材料 | [ |
| 壳聚糖 | CS | 优异的止血能力、生物降解性、生物相容性、抗菌及细胞亲和力 | 溶解性差 机械强度不高 | 口腔组织 成骨修复 伤口修复 | [ |
| 胶原蛋白 | Col | 优异的止血能力、生物相容性 | 机械性较差 稳定性不好 | 伤口修复 成骨修复 软骨修复 | [ |
| 明胶 | Gel | 良好的水溶性、生物降解性和低免疫原性 | 降解速率 难以调控 | 药物递送 神经修复 心脏修复 软骨修复 成骨修复 伤口修复 | [ |
| 丝素蛋白 | SF | 可调的理化性质、生物相容性、低炎症性和优异的力学性能 | 原材料提取 及纯化复杂 | 成骨修复 软骨修复 脊髓修复 伤口修复 | [ |
| 聚乙二醇 | PEG | 生物相容性、保湿、低毒、低免疫原性、生物降解性、良好的水溶性 | 化学交联剂 不易去除 | 伤口修复 成骨修复 | [ |
| 水凝胶 | 骨架材料 | 功能 | 作用机制 | 参考文献 |
|---|---|---|---|---|
| GelMA/TA/PVA⁃CMC | Gel | 止血 黏附 | 明胶及壳聚糖本身的止血能力; TA的邻苯二酚和苯酚基团对带负电荷的血细胞吸引作用 | [ |
| GelMA/γPGA⁃NHS | Gel | 止血 抗炎 黏附 | 明胶结构中的RGD序列促进血细胞的黏附和聚集 | [ |
| CSMA⁃FA/OBSP | CS | 止血 抗炎 | OBSP与FA协同诱导巨噬细胞由M1表型转变为M2表型 | [ |
| SFMA/GA/Zn | SF | 抗炎 抗氧化 | 引入GA,发挥其在调控细胞因子(iNOS mRNA,TNF⁃α,IL⁃6);蛋白表达(减少NLRP3、easpase⁃1及凋亡相关蛋白caspase⁃3、BAX和增加bcl⁃2);信号通路(MAPK)等促进抗炎 | [ |
| GelMA⁃CPBA/EGCG | Gel | 抗氧化 | 引入多酚结构,与自由基反应 | [ |
| GA⁃CSMA | CS | 抗氧化,抗炎 | 引入多酚结构,与自由基反应 | [ |
| QDCS⁃PA/DPUL⁃GMA /Ga | PUL | 抗菌 | 引入Ga3+,对细菌的铁代谢产生干扰 | [ |
| HAMA/tFNA/GL13K | HA | 抗菌 | 搭载GL13K,与细菌内膜结合,导致肽渗透、细菌细胞内容物泄漏和细胞死亡 | [ |
| SFMA/BSMA | SF | 促进血管生成 | 重启HIF⁃1α信号通路 | [ |
| GelMA/HAMA/Ag@ZnO | Gel HA | 促进血管生成 | 作用于锌感应受体ZnR/GPR39并触发cAMP和AKT通路 | [ |
| Dex⁃MA/Hep⁃MA/AS/FGF⁃2 | Dex Hep | 抗菌 抗炎 胶原沉积 | 刺激平滑肌细胞的增长 | [ |
| GelMA⁃MY@Lipo | Gel | 促进成纤维细胞迁移 胶原沉积 | 激活PI3K/AKT信号及其下游分子Rac1 | [ |
| 水凝胶 | 骨架材料 | 功能 | 作用机制 | 参考文献 |
|---|---|---|---|---|
| GelMA/TA/PVA⁃CMC | Gel | 止血 黏附 | 明胶及壳聚糖本身的止血能力; TA的邻苯二酚和苯酚基团对带负电荷的血细胞吸引作用 | [ |
| GelMA/γPGA⁃NHS | Gel | 止血 抗炎 黏附 | 明胶结构中的RGD序列促进血细胞的黏附和聚集 | [ |
| CSMA⁃FA/OBSP | CS | 止血 抗炎 | OBSP与FA协同诱导巨噬细胞由M1表型转变为M2表型 | [ |
| SFMA/GA/Zn | SF | 抗炎 抗氧化 | 引入GA,发挥其在调控细胞因子(iNOS mRNA,TNF⁃α,IL⁃6);蛋白表达(减少NLRP3、easpase⁃1及凋亡相关蛋白caspase⁃3、BAX和增加bcl⁃2);信号通路(MAPK)等促进抗炎 | [ |
| GelMA⁃CPBA/EGCG | Gel | 抗氧化 | 引入多酚结构,与自由基反应 | [ |
| GA⁃CSMA | CS | 抗氧化,抗炎 | 引入多酚结构,与自由基反应 | [ |
| QDCS⁃PA/DPUL⁃GMA /Ga | PUL | 抗菌 | 引入Ga3+,对细菌的铁代谢产生干扰 | [ |
| HAMA/tFNA/GL13K | HA | 抗菌 | 搭载GL13K,与细菌内膜结合,导致肽渗透、细菌细胞内容物泄漏和细胞死亡 | [ |
| SFMA/BSMA | SF | 促进血管生成 | 重启HIF⁃1α信号通路 | [ |
| GelMA/HAMA/Ag@ZnO | Gel HA | 促进血管生成 | 作用于锌感应受体ZnR/GPR39并触发cAMP和AKT通路 | [ |
| Dex⁃MA/Hep⁃MA/AS/FGF⁃2 | Dex Hep | 抗菌 抗炎 胶原沉积 | 刺激平滑肌细胞的增长 | [ |
| GelMA⁃MY@Lipo | Gel | 促进成纤维细胞迁移 胶原沉积 | 激活PI3K/AKT信号及其下游分子Rac1 | [ |
| [1] | Naseri E, Ahmadi A. A review on wound dressings: antimicrobial agents, biomaterials, fabrication techniques, and stimuli⁃responsive drug release[J]. European Polymer Journal. 2022, 173: 111293. |
| [2] | Liu P, Choi J W, Lee M K, et al. Spirulina protein promotes skin wound repair in a mouse model of full⁃thickness dermal excisional wound[J]. International Journal of Molecular Medicine. 2020, 46(1): 351⁃359. |
| [3] | Talbott H E, Mascharak S, Griffin M, et al. Wound healing, fibroblast heterogeneity, and fibrosis[J]. Cell Stem Cell. 2022, 29(8): 1 161⁃1 180. |
| [4] | Yang J, Yu H, Wang L,et al. Advances in adhesive hydrogels for tissue engineering[J]. European Polymer Journal. 2022, 172: 111241. |
| [5] | Guo W, Wang Q, Wang H, et al. Photo⁃cross⁃linkable hydrogel with lubricating, antimicrobial, and antioxidant properties for bacteria⁃infected wound healing[J]. Chemistry of Materials. 2024, 36(12): 6 114⁃6 129. |
| [6] | You S, Xiang Y, Qi X, et al. Harnessing a biopolymer hydrogel reinforced by copper/tannic acid nanosheets for treating bacteria⁃infected diabetic wounds[J]. Materials Today Advances. 2022, 15: 100271. |
| [7] | Guo B, Dong R, Liang Y, et al. Haemostatic materials for wound healing applications[J]. Nature Reviews Chemistry. 2021, 5(11): 773⁃791. |
| [8] | Xiang T, Guo Q, Jia L, et al. Multifunctional hydrogels for the healing of diabetic wounds[J]. Advanced Healthcare Materials. 2024, 13(1): 2301885. |
| [9] | Zhang S, Liu H, Li W, et al. Polysaccharide⁃based hydrogel promotes skin wound repair and research progress on its repair mechanism[J]. International Journal of Biological Macromolecules. 2023, 248: 125949. |
| [10] | Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing[J]. Advanced Materials. 2021, 33(39): 2100176. |
| [11] | Peña O A, Martin P. Cellular and molecular mechanisms of skin wound healing[J]. Nature Reviews Molecular Cell Biology. 2024, 25(8): 599⁃616. |
| [12] | Khan M, Stojanovic G M, Abdullah M, et al. Fundamental pro⁃perties of smart hydrogels for tissue engineering applications: a review[J]. International Journal of Biological Macromolecules. 2024, 254: 127882. |
| [13] | Babaluei M, Mojarab Y, Mottaghitalab F, et al. Injectable hydrogel based on silk fibroin/carboxymethyl cellulose/agarose containing polydopamine functionalized graphene oxide with conductivity, hemostasis, antibacterial, and anti⁃oxidant properties for full⁃thickness burn healing[J]. International Journal of Biological Macromolecules. 2023, 249: 126051. |
| [14] | Zhao W, Li Y, Zhang X, et al. Photo⁃responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing[J]. Journal of Controlled Release. 2020, 323: 24⁃35. |
| [15] | Ma H, Peng Y, Zhang S, et al. Effects and progress of photo⁃crosslinking hydrogels in wound healing improvement[J]. Gels. 2022, 8(10): 609. |
| [16] | Zhang Q, Yan K, Zheng X, et al. Research progress of photo⁃crosslink hydrogels in ophthalmology: a comprehensive review focus on the applications[J]. Mater Today Bio. 2024, 26: 101082. |
| [17] | Zhang Y, Liu C, Zhang S, et al. Multiple dynamic interaction⁃enabled eutectogel with strong tissue adhesion, mechanical strength and temperature tolerance for transdermal drug delivery: double monodentate coordination and π⁃π interaction[J]. Chemical Engineering Journal. 2023, 476: 146583. |
| [18] | Huang R, Hua J, Ru M, et al. Superb silk hydrogels with high adaptability, bioactivity, and versatility enabled by photo⁃cross⁃linking[J]. ACS Nano. 2024, 18(23): 15 312⁃15 325. |
| [19] | Huang L, Zhu Z, Wu D, et al. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration[J]. Carbohydrate Polymers,2019, 225: 115110. |
| [20] | 孙 瑞, 高银佳, 史海斌.光交联技术的生物应用研究进展[J]. 中国光学. 2018, 11(3): 444⁃458. |
| SUN R, GAO Y J, SHI H B. Advances in biological application of photo⁃crosslinking technique[J]. Chinese Journal of Optics. 2018, 11(3): 444⁃458. | |
| [21] | Seifert T, Malo M, Lengqvist J, et al. Identification of the binding site of chroman-4⁃one⁃based sirtuin 2⁃selective inhibitors using photoaffinity labeling in combination with tandem mass spectrometry[J]. Journal of Medicinal Chemistry,2016, 59(23): 10 794⁃10 799. |
| [22] | Guo A D, Wei D, Nie H J, et al. Light⁃induced primary amines and o⁃nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation[J]. Nat Commun,2020, 11(1): 5 472. |
| [23] | Yang X, Li X, Wu Z, et al. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review[J]. International Journal of Biological Macromolecules,2023, 246: 125570. |
| [24] | Li L, Scheiger J M, Levkin P A. Design and applications of photoresponsive hydrogels[J]. Advanced Materials,2019, 31(26): 1807333. |
| [25] | Liu Y, Li S, Huang J, et al. Photo⁃crosslinking modified gelatin⁃silk fibroin hydrogel for accelerating wound repair of open abdomen[J]. Chemical Engineering Journal. 2024, 496: 154161. |
| [26] | Chen X, Zhang M, Zhu D, et al. Photocrosslinkable carboxylated polyvinyl alcohol nanocomposite hydrogels with enhanced compressive strength and cell adhesion[J]. European Polymer Journal,2023, 196: 112252. |
| [27] | Amirian J, Wychowaniec J K, Amel Zendehdel E, et al. Versatile potential of photo⁃cross⁃linkable silk fibroin: roadmap from chemical processing toward regenerative medicine and biofabrication applications[J]. Biomacromolecules,2023, 24(7): 2 957⁃2 981. |
| [28] | Zhu J, Tang X, Jia Y, et al. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery⁃a review[J]. International Journal of Pharmaceutics. 2020, 578: 119127. |
| [29] | Graça M F P, Miguel S P, Cabral C S D, et al. Hyaluronic acid⁃based wound dressings: a review[J]. Carbohydrate Polymers,2020, 241: 116364. |
| [30] | Zhai P, Peng X, Li B, et al. The application of hyaluronic acid in bone regeneration[J]. International Journal of Biological Macromolecules,2020, 151: 1 224⁃1 239. |
| [31] | Li H, Qi Z, Zheng S, et al. The application of hyaluronic acid⁃based hydrogels in bone and cartilage tissue engineering[J]. Advances in Materials Science and Engineering. 2019, 2019(1): 3027303. |
| [32] | Ahmadian E, Eftekhari A, Dizaj S M, et al. The effect of hyaluronic acid hydrogels on dental pulp stem cells behavior[J]. International Journal of Biological Macromolecules. 2019, 140: 245⁃254. |
| [33] | Wang Y, Zou J, Cai M, et al. Applicatoin of chitosan⁃based hydrogel in oral tissue engineering[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023, 48(1): 138⁃147. |
| [34] | 唐国柯, 朱 亮, 刘彦斌, 等. 壳聚糖基可注射水凝胶在骨组织修复再生方面的研究进展[J]. 生物骨科材料与临床研究. 2024, 21(2): 71⁃76. |
| TANG G K, ZHU L, LIU Y B, et al. Research progress of chitosan⁃based injectable hydrogels in bone tissue repair and regeneration[J]. Orthopaedic Biomechanics Materials and Clinical Study[J]. 2024, 21(2): 71⁃76. | |
| [35] | Yang W, Ni W, Yu C, et al. Biomimetic bone⁃like composite hydrogel scaffolds composed of collagen fibrils and natural hydroxyapatite for promoting bone repair[J]. ACS Biomaterials Science & Engineering. 2024, 10(4): 2 385⁃2 397. |
| [36] | Cao Y, Zhang H, Qiu M, et al. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects[J]. International Journal of Biological Macromolecules. 2024, 257: 128593. |
| [37] | Jiang Q, Zhou L, Yang Y, et al. Injectable NGF⁃loaded double crosslinked collagen/hyaluronic acid hydrogels for irregular bone defect repair via neuro⁃guided osteogenic process[J].Chemical Engineering Journal,2024, 497: 154627. |
| [38] | Han L, Xu J, Lu X,et al. Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair[J]. Journal of Materials Chemistry B. 2017, 5(4): 731⁃741. |
| [39] | Grava A, Egle K, Dubnika A. Enzymatically crosslinked in situ synthesized silk/gelatin/calcium phosphate hydrogels for drug delivery[J]. Materials. 2021, 14(23): 7 191. |
| [40] | Chen H, Fan L, Peng N, et al. Galunisertib⁃loaded gelatin methacryloyl hydrogel microneedle patch for cardiac repair after myocardial infarction[J]. ACS Applied Materials & Interfaces. 2022, 14(36): 40 491⁃40 500. |
| [41] | Shen M, Wang L, Li K, et al. Gelatin methacrylic acid hydrogel⁃based nerve growth factors enhances neural stem cell growth and differentiation to promote repair of spinal cord injury[J]. International Journal of Nanomedicine,2024, 19: 10 589⁃10 604. |
| [42] | Zhao C, Yang J, Chen W, et al. Gelatin/dopamine/zinc⁃doped ceria/curcumin nanocomposite hydrogels for repair of chronic refractory wounds[J]. International Journal of Pharmaceutics,2024, 663: 124575. |
| [43] | Wang G, Yuan N, Li N, et al. Vascular endothelial growth factor mimetic peptide and parathyroid hormone (1–34) delivered via a blue⁃light⁃curable hydrogel synergistically accelerate bone regeneration[J]. ACS Applied Materials & Interfaces,2022, 14(31): 35 319⁃35 332. |
| [44] | Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin⁃DNA hydrogel⁃based cartilage organoid precursor[J]. Bioactive Materials,2024, 35: 429⁃444. |
| [45] | Chen S, Liu S, Zhang L, et al. Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury[J]. Chemical Engineering Journal,2020, 399: 125795. |
| [46] | Cheng Q, He Y, Ma L, et al. Regenerated silk fibroin coating stable liquid metal nanoparticles enhance photothermal antimicrobial activity of hydrogel for wound infection repair[J]. International Journal of Biological Macromolecules. 2024, 263: 130373. |
| [47] | Shi L, Wang F, Zhu W, et al. Self⁃healing silk fibroin⁃based hydrogel for bone regeneration: dynamic metal⁃ligand self⁃assembly approach[J]. Advanced Functional Materials,2017, 27(37): 1700591. |
| [48] | Chang S, Li C, Xu N, et al. A sustained release of alendronate from an injectable tetra⁃PEG hydrogel for efficient bone repair[J]. Frontiers in Bioengineering and Biotechnology,2022, 10: 961227. |
| [49] | Hu J, Xie J, Peng T, et al. Fabrication of a MXene⁃based shape⁃memory hydrogel and its application in the wound repair of skin[J]. Soft Matter,2024, 20(20): 4 136⁃4 142. |
| [50] | Chang W, Liu P, Lin M, et al. Applications of hyaluronic acid in ophthalmology and contact lenses[J]. Molecules,2021, 26(9): 2 485. |
| [51] | Kaul A, Short W D, Keswani S G, et al. Immunologic roles of hyaluronan in dermal wound healing[J]. Biomolecules, 2021, 11(8): 1 234. |
| [52] | Yang H, Song L, Zou Y, et al. Role of hyaluronic acids and potential as regenerative biomaterials in wound healing[J]. ACS Applied Bio Materials,2021, 4(1): 311⁃324. |
| [53] | Graça M F P, Miguel S P, Cabral C S D, et al. Hyaluronic acid⁃based wound dressings: a review[J]. Carbohydrate Polymers. 2020, 241: 116364. |
| [54] | Chandika P, Khan F, Heo S, et al. Multifunctional dual cross⁃linked poly (vinyl alcohol)/methacrylate hyaluronic acid/chitooligosaccharide⁃sinapic acid wound dressing hydrogel[J]. International Journal of Biological Macromolecules,2022, 222: 1 137⁃1 150. |
| [55] | Harugade A, Sherje A P, Pethe A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications[J]. Reactive and Functional Polymers,2023, 191: 105634. |
| [56] | Gao Y, Wu Y. Recent advances of chitosan⁃based nanoparticles for biomedical and biotechnological applications[J]. International Journal of Biological Macromolecules,2022, 203: 379⁃388. |
| [57] | Deng P, Yao L, Chen J, et al. Chitosan⁃based hydrogels with injectable, self⁃healing and antibacterial properties for wound healing[J]. Carbohydrate polymers,2022, 276: 118718. |
| [58] | Pawariya V, De S, Dutta J. Chitosan⁃based Schiff bases: promising materials for biomedical and industrial applications[J]. Carbohydrate polymers,2024, 323: 121395. |
| [59] | Zhu Z, Liang T, Dai G, et al. Extraction, structural⁃activity relationships, bioactivities, and application prospects of Bletilla striata polysaccharides as ingredients for functional products: A review[J]. International Journal of Biological Macromolecules,2023, 245: 125407. |
| [60] | Maiz⁃Fernandez S, Perez⁃Alvarez L, Silvan U, et al. Photocrosslinkable and self⁃healable hydrogels of chitosan and hyaluronic acid[J]. International Journal of Biological Macromolecules,2022, 216: 291⁃302. |
| [61] | He X, Liu X, Yang J, et al. Tannic acid⁃reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing[J]. Carbohydrate polymers,2020, 247: 116689. |
| [62] | Shao H, Wu X, Xiao Y, et al. Recent research advances on polysaccharide⁃, peptide⁃, and protein⁃based hemostatic materials: A review[J]. International Journal of Biological Macromolecules, 2024, 261: 129752. |
| [63] | Gaspar⁃Pintiliescu A, Stanciuc A, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review[J]. International Journal of Biological Macromolecules,2019, 138: 854⁃865. |
| [64] | Bao Z, Gao M, Fan X, et al. Development and characterization of a photo⁃cross⁃linked functionalized type⁃I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel[J]. International Journal of Biological Macromolecules,2020, 155: 163⁃173. |
| [65] | Zhang J, Liu C, Li X, et al. Application of photo⁃crosslinkable gelatin methacryloyl in wound healing[J]. Frontiers in Bioengineering and Biotechnology,2023, 11: 1303709. |
| [66] | Zhang Q, Chang C, Qian C, et al. Photo⁃crosslinkable amniotic membrane hydrogel for skin defect healing[J]. Acta Biomater,2021, 125: 197⁃207. |
| [67] | O'Connell C D, Zhang B, Onofrillo C, et al. Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions[J]. Soft Matter, 2018, 14(11): 2 142⁃2 151. |
| [68] | Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, et al. Silk fibroin for skin injury repair: Where do things stand?[J]. Advanced Drug Delivery Reviews,2020, 153: 28⁃53. |
| [69] | 丁召召, 吕 强. 丝素蛋白生物材料在创面修复中的应用研究进展[J]. 中华烧伤与创面修复杂志. 2022, 38(10): 973⁃977. |
| DING Z Z, LYU Q. Research advances on the application of silk fibroin biomaterials in wound repair[J]. Chinese Journal of Burns,2022, 38(10): 973⁃977. | |
| [70] | Mei J, Zhou J, Kong L, et al. An injectable photo⁃cross⁃linking silk hydrogel system augments diabetic wound healing in orthopaedic surgery through spatiotemporal immunomodulation[J]. Journal of Nanobiotechnology,2022, 20(1): 232. |
| [71] | Kim S H, Hong H, Ajiteru O, et al. 3D bioprinted silk fibroin hydrogels for tissue engineering[J]. Nature Protocols,2021, 16(12): 5 484⁃5 532. |
| [72] | Lan Z, Kar R, Chwatko M, et al. High porosity PEG⁃based hydrogel foams with self⁃tuning moisture balance as chronic wound dressings[J]. Journal of Biomedical Materials Research Part A,2023, 111(4): 465⁃477. |
| [73] | Zhu J, Li F, Wang X, et al. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing[J]. ACS Applied Materials & Interfaces,2018, 10(16): 13 304⁃13 316. |
| [74] | Soni J, Sahiba N, Sethiya A, et al. Polyethylene glycol: a promising approach for sustainable organic synthesis[J]. Journal of Molecular Liquids,2020, 315: 113766. |
| [75] | Ronca A, D'Amora U, Raucci M G, et al. A combined approach of double network hydrogel and nanocomposites based on hyaluronic acid and poly (ethylene glycol) diacrylate blend[J]. Materials, 2018, 11(12): 2454. |
| [76] | 李佳琪, 王 蕊, 韩倩倩, 等. 软组织修复医用材料及产品的研究进展[J]. 中国医疗器械杂志. 2023, 47(4): 415⁃423. |
| LI J Q, WANG R, HAN Q Q, et al. Research advances in medical materials and products for soft tissue repairs[J]. 2023, 47(4): 415⁃423. | |
| [77] | 寻东民, 蒋晓宇, 孔令玺, 等. 粘合材料及其在生物医学中的应用:进展与展望[J]. 生物工程学报. 2019, 35(12): 2 386⁃2 400. |
| XUN D M, JIANG X Y, KONG L X, et al. Application of adhesive materials in biomedicine: progress and prospects[J]. Chinese Journal of Biotechnology,2019, 35(12): 2 386⁃2 400. | |
| [78] | Zhang M, Chan C, Pauls J P, et al. Investigation of heparin⁃loaded poly(ethylene glycol)⁃based hydrogels as anti⁃thrombogenic surface coatings for extracorporeal membrane oxygenation[J]. Journal of Materials Chemistry B,2022, 10(26): 4 974⁃4 983. |
| [79] | Wang P, Cai F, Li Y, et al. Emerging trends in the application of hydrogel⁃based biomaterials for enhanced wound healing: A literature review[J]. International Journal of Biological Macromolecules, 2024, 261: 129300. |
| [80] | Zhou S, Xie M, Su J, et al. New insights into balancing wound healing and scarless skin repair[J]. Journal of Tissue Engineering,2023, 14: 1778676152. |
| [81] | Yang J, Jin X, Liu W, et al. A programmable oxygenation device facilitates oxygen generation and replenishment to promote wound healing[J]. Advanced Materials,2023, 35(52): 2305819. |
| [82] | Long L, Liu W, Hu C, et al. Construction of multifunctional wound dressings with their application in chronic wound treatment[J]. Biomaterials Science,2022, 10(15): 4 058⁃4 076. |
| [83] | Veith A P, Henderson K, Spencer A, et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Advanced Drug Delivery Reviews,2019, 146: 97⁃125. |
| [84] | Zha K, Zhang W, Hu W, et al. Three⁃step regenerative strategy: multifunctional bilayer hydrogel for combined photothermal/photodynamic therapy to promote drug⁃resistant bacteria⁃infected wound healing[J]. Advanced Functional Materials,2024, 34(2): 2308145. |
| [85] | Yang K, Yang J, Chen R, et al. Fast self⁃healing hyaluronic acid hydrogel with a double⁃dynamic network for skin wound repair[J]. ACS Applied Materials & Interfaces,2024, 16(29): 37 569⁃37 580. |
| [86] | 周舒毅,朱 敏,刘忆颖,等. 高分子止血材料研究进展[J]. 中国塑料,2022, 36(7): 74⁃84. |
| ZHOU S Y, ZHU M, LIU Y Y, et al. Research progress in polymer⁃based hemostatic materials[J]. China Plastics,2022, 36(7): 74⁃84. | |
| [87] | Zhang B, Wang M, Tian H, et al. Functional hemostatic hydrogels: design based on procoagulant principles[J]. Journal of Materials Chemistry B, 2024, 12(7): 1 706⁃1 729. |
| [88] | Zhou M, Lin X, Wang L, et al. Preparation and application of hemostatic hydrogels[J]. Small. 2024, 20(22): 2309485. |
| [89] | Eskandarinia A, Morowvat M H, Niknezhad S V, et al. A photocrosslinkable and hemostatic bilayer wound dressing based on gelatin methacrylate hydrogel and polyvinyl alcohol foam for skin regeneration[J]. International Journal of Biological Macromolecules. 2024, 266: 131231. |
| [90] | Zhu Z, Ye H, Zhang K, et al. Naturally derived injectable dual⁃cross⁃linked adhesive hydrogel for acute hemorrhage control and wound healing[J]. Biomacromolecules. 2024, 25(4): 2 574⁃2 586. |
| [91] | Wang Z, Qi F, Luo H, et al. Inflammatory microenvironment of skin wounds[J]. Frontiers in Immunology, 2022, 13: 789274. |
| [92] | Zhu M, Cao L, Melino S, et al. Orchestration of mesenchymal stem/stromal cells and inflammation during wound healing[J]. Stem Cells Translational Medicine,2023, 12(9): 576⁃587. |
| [93] | Zhong G, Lei P, Guo P, et al. A Photo⁃induced cross⁃linking enhanced A and B combined multi⁃functional spray hydrogel instantly protects and promotes of irregular dynamic wound healing[J]. Small,2024, 20(23): 2309568. |
| [94] | Qian Y, Zheng Y, Jin J, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold[J]. Advanced Materials,2022, 34(29): 2200521. |
| [95] | Lopez T, Wendremaire M, Lagarde J, et al. Wound healing versus metastasis: role of oxidative stress[J]. Biomedicines,2022, 10(11): 2784. |
| [96] | Wang Y, Liu K, Wei W, et al. A multifunctional hydrogel with photothermal antibacterial and antiOxidant activity for smart monitoring and promotion of diabetic wound healing[J]. Advanced Functional Materials,2024, 34(38): 2402531. |
| [97] | Zhao M, Kang M, Wang J, et al. Stem cell⁃derived nanovesicles embedded in dual⁃layered hydrogel for programmed ROS regulation and comprehensive tissue regeneration in burn wound healing[J]. Adv Mater,2024, 36(32): e2401369. |
| [98] | Chen F, Qin J, Wu P, et al. Glucose⁃responsive antioxidant hydrogel accelerates diabetic wound healing[J]. Advanced Healthcare Materials,2023, 12(21): 2300074. |
| [99] | Lu Y, Lou X, Jiang J, et al. Antioxidative, anti⁃inflammatory, antibacterial, photo⁃cross⁃linkable hydrogel of gallic acid⁃chitosan methacrylate: synthesis, in vitro, and in vivo assessments[J]. Biomacromolecules,2024, 25(7): 4 358⁃4 373. |
| [100] | Zhou L, Zheng H, Liu Z, et al. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2T x MXene nanosheets for promoting multidrug⁃resistant bacteria⁃infected wound healing[J]. ACS Nano,2021, 15(2): 2 468⁃2 480. |
| [101] | Zhang J, Zhang S, Liu C, et al. Photopolymerized multifunctional sodium alginate⁃based hydrogel for antibacterial and coagulation dressings[J]. International Journal of Biological Macromolecules,2024, 260: 129428. |
| [102] | Liao W, Yang D, Xu Z, et al. Antibacterial collagen⁃based nanocomposite dressings for promoting infected wound healing[J]. Advanced Healthcare Materials,2023, 12(15): e2203054. |
| [103] | Jiang F, Duan Y, Li Q, et al. Insect chitosan/pullulan/gallium photo⁃crosslinking hydrogels with multiple bioactivities promote MRSA⁃infected wound healing[J]. Carbohydrate Polymers,2024, 334: 122045. |
| [104] | Qi C, Sun Q, Xiao D, et al. Tetrahedral framework nucleic acids/hyaluronic acid⁃methacrylic anhydride hybrid hydrogel with antimicrobial and anti⁃inflammatory properties for infected wound healing[J]. International Journal of Oral Science,2024, 16(1): 30. |
| [105] | Li R, Liu K, Huang X, et al. Bioactive materials promote wound healing through modulation of cell behaviors[J]. Advanced Science,2022, 9(10): 2105152. |
| [106] | Chen Y, Yuan Z, Sun W, et al. Vascular endothelial growth factor⁃recruiting nanofiber bandages promote multifunctional skin regeneration via improved angiogenesis and immunomodulation[J]. Advanced Fiber Materials (Online),2023, 5(1): 327⁃348. |
| [107] | He D, Liao C, Li P, et al. Multifunctional photothermally responsive hydrogel as an effective whole⁃process management platform to accelerate chronic diabetic wound healing[J]. Acta Biomaterialia,2024, 174: 153⁃162. |
| [108] | Wu C, Long L, Zhang Y, et al. Injectable conductive and angiogenic hydrogels for chronic diabetic wound treatment[J]. Journal of Controlled Release,2022, 344: 249⁃260. |
| [109] | Rahman M M, Garcia N, Loh Y S, et al. A platelet⁃derived hydrogel improves neovascularisation in full thickness wounds[J]. Acta Biomaterialia,2021, 136: 199⁃209. |
| [110] | Vizely K, Wagner K T, Mandla S, et al. Angiopoietin-1 derived peptide hydrogel promotes molecular hallmarks of regeneration and wound healing in dermal fibroblasts[J]. iScience,2023, 26(2): 105984. |
| [111] | Li Y, Wang Y, Ding Y, et al. A double network composite hydrogel with self⁃regulating Cu2+ /luteolin release and mechanical modulation for enhanced wound healing[J]. ACS Nano,2024, 18(26): 17 251⁃17 266. |
| [112] | Pang L, Tian P, Cui X, et al. In situ photo⁃cross⁃linking hydrogel accelerates diabetic wound healing through restored hypoxia⁃inducible factor 1⁃alpha pathway and regulated inflammation[J]. ACS Applied Materials & Interfaces,2021, 13(25): 29 363⁃29 379. |
| [113] | Ma X, Huang X, Wang A, et al. In Situ injectable photo⁃crosslinking hydrogel with heterojunction nanoparticles for dual⁃channel synergistic disinfection and cutaneous regeneration in diabetic chronic wound healing[J]. Nano Today,2024, 56: 102235. |
| [114] | Li L, Ma Y, He G, et al. Pilose antler extract restores type I and III collagen to accelerate wound healing[J]. Biomedicine & Pharmacotherapy,2023, 161: 114510. |
| [115] | Wang Z, Zhao F, Deng J, et al. Photopolymerized multifunctional hydrogel loaded with asiaticoside and growth factor for accelerating diabetic wound healing[J]. ACS Applied Polymer Materials,2024, 6(7): 4 267⁃4 281. |
| [116] | Kushibiki T, Mayumi Y, Nakayama E, et al. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor[J]. Scientific Reports,2021, 11(1): 23094. |
| [117] | Zhou C, Cai Z, Guo J, et al. Injective hydrogel loaded with liposomes⁃encapsulated MY-1 promotes wound healing and increases tensile strength by accelerating fibroblast migration via the PI3K/AKT⁃Rac1 signaling pathway[J]. Journal of nanobiotechnology,2024, 22(1): 322⁃396. |
| [1] | LI Yaxin, XIE Junlong, LI Chenghao, CAI Shaojun. Preparation and properties of UV⁃curable PAA⁃PAM copolymer hydrogels [J]. China Plastics, 2025, 39(7): 22-27. |
| [2] | LI Yajiao, LI Ning, QIU Siyuan, CHEN Yuanmin, WANG Wenhao, SUN Jingyao. Preparation method and performance analysis of hydrogel for thermal management [J]. China Plastics, 2025, 39(5): 18-24. |
| [3] | SONG Shasha, SI Xingyu, ZHENG Niming, YU Ying, ZHANG Yang. Research progress in hydrogels for high⁃sensitivity strain sensors [J]. China Plastics, 2024, 38(9): 73-81. |
| [4] | MA Xiuqing, LAO Zhichao, LI Mingqian, HAN Shuntao, HU Nan. Effect of 3D printing process parameters on mechanical properties of PLA/PTW blends [J]. China Plastics, 2024, 38(2): 70-75. |
| [5] | ZENG Yuan, LI Liang, LIU Wei, MA Jingjing, LIU Rangtong. Sodium alginate/polyacrylamide composite hydrogel toughened with chitosan [J]. China Plastics, 2024, 38(1): 42-48. |
| [6] | LI Haoyi, WANG Yiming, DING Xi, ZHANG Yi, BAI Jingyu, LI Feifei, ZHANG Yueyong, YANG Weimin. Research progress in electrospinning drug loading and its applications [J]. China Plastics, 2023, 37(12): 60-69. |
| [7] | WANG Xiaonan, FU Jingao, CHEN Sisi, GAO Hainan, CAI Yudong. Research progress in hydrogel for oilfield development [J]. China Plastics, 2023, 37(10): 101-110. |
| [8] | ZHOU Shuyi, ZHU Min, LIU Yiying, CAO Shuhui, CAI Qixuan, NIE Hui, ZHANG Yuxia, ZHOU Hongfu. Research progress in polymer⁃based hemostatic materials [J]. China Plastics, 2022, 36(7): 74-84. |
| [9] | LIU Wei, WU Xian, CHEN Xiaocheng, CHENG Xiaoqiong, ZHANG Chun. Effect of carboxylate fillers on mechanical, conductive, and sensing performance of PVA/CNF hydrogel [J]. China Plastics, 2022, 36(6): 16-23. |
| [10] | WU Jingjing, ZHANG Wenming, ZHOU Qinpeng, ZHANG Xinqing, LU Chong. Degradation behavior of mPEG⁃PLA block copolymer and its micelles [J]. China Plastics, 2022, 36(11): 7-13. |
| [11] | WANG Pei, NIU Lili, LI Jingyu, GENG Hongmei. Preparation and performance analysis of porous scaffold materials with sustained release activity [J]. China Plastics, 2022, 36(11): 73-78. |
| [12] | . Preparation and Performance of Poly(acrylic acid)/Graphene Oxide Self-healing Hydrogels [J]. China Plastics, 2016, 30(11): 42-47 . |
| [13] | . Valorization of Agricultural and Forestry Biomass Byproducts:Progress in Isolation,Modification and Application of Hemicellulose [J]. China Plastics, 2016, 30(04): 12-22 . |
| [14] | . Preparation and Performance of Poly(N-isopropylacrylamide)/Clay Nanocomposite Self-healing Hydrogel [J]. China Plastics, 2015, 29(12): 18-22 . |
| [15] | Ren WU Wei WU Yu CHEN Xingqing LIN Chenchen JIANG. Influence and Mechanism of Nucleation Agents on PET/PEN Blends [J]. China Plastics, 2014, 28(01): 28-33 . |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||