京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (11): 7-13.DOI: 10.19491/j.issn.1001-9278.2022.11.002
• Materials and Properties • Previous Articles Next Articles
WU Jingjing1, ZHANG Wenming2(), ZHOU Qinpeng1, ZHANG Xinqing1, LU Chong1(
)
Received:
2022-07-31
Online:
2022-11-26
Published:
2022-11-25
CLC Number:
WU Jingjing, ZHANG Wenming, ZHOU Qinpeng, ZHANG Xinqing, LU Chong. Degradation behavior of mPEG⁃PLA block copolymer and its micelles[J]. China Plastics, 2022, 36(11): 7-13.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2022.11.002
温度/℃ | 样品 | 研究目的 | 采样时间点 | 检测内容 |
---|---|---|---|---|
4 | mPEG⁃PLA、DMs | 测试长期稳定性 | 0、3、6、9、12、18、24个月 | 外观,Mw、PDI,水分含量,乳酸、丙交酯含量 |
25 | 加速降解实验 | 0、1、3、6个月 | ||
40 | 加速降解实验 | 0、1、3、6个月 | ||
60 | 高温降解实验 | 0、5、10 d |
温度/℃ | 样品 | 研究目的 | 采样时间点 | 检测内容 |
---|---|---|---|---|
4 | mPEG⁃PLA、DMs | 测试长期稳定性 | 0、3、6、9、12、18、24个月 | 外观,Mw、PDI,水分含量,乳酸、丙交酯含量 |
25 | 加速降解实验 | 0、1、3、6个月 | ||
40 | 加速降解实验 | 0、1、3、6个月 | ||
60 | 高温降解实验 | 0、5、10 d |
温度/℃ | 样品 | 变化开始时间点 | 实验总时长 | 起始形态 | 最终形态 |
---|---|---|---|---|---|
60 | mPEG⁃PLA | 5 d | 10 d | 淡黄色块状 | 无色半透明黏稠状物 |
DMs | 5 d | 10 d | 白色冻干块 | 透明微黄色熔融物 | |
40 | mPEG⁃PLA | 1月 | 6月 | 淡黄色块状 | 微黄色半透明半凝固物 |
DMs | 1月 | 6月 | 白色冻干块 | 半透明熔融物 | |
25 | mPEG⁃PLA | 无变化 | 6月 | 淡黄色块状 | 淡黄色块状 |
DMs | 无变化 | 6月 | 白色冻干块 | 白色冻干块 | |
4 | mPEG⁃PLA | 无变化 | 24月 | 淡黄色块状 | 淡黄色块状 |
DMs | 无变化 | 24月 | 白色冻干块 | 白色冻干块 |
温度/℃ | 样品 | 变化开始时间点 | 实验总时长 | 起始形态 | 最终形态 |
---|---|---|---|---|---|
60 | mPEG⁃PLA | 5 d | 10 d | 淡黄色块状 | 无色半透明黏稠状物 |
DMs | 5 d | 10 d | 白色冻干块 | 透明微黄色熔融物 | |
40 | mPEG⁃PLA | 1月 | 6月 | 淡黄色块状 | 微黄色半透明半凝固物 |
DMs | 1月 | 6月 | 白色冻干块 | 半透明熔融物 | |
25 | mPEG⁃PLA | 无变化 | 6月 | 淡黄色块状 | 淡黄色块状 |
DMs | 无变化 | 6月 | 白色冻干块 | 白色冻干块 | |
4 | mPEG⁃PLA | 无变化 | 24月 | 淡黄色块状 | 淡黄色块状 |
DMs | 无变化 | 24月 | 白色冻干块 | 白色冻干块 |
样品 | 降解时间/d | Mw | PDI | 丙交酯 含量/% | 乳酸 含量/% |
---|---|---|---|---|---|
mPEG⁃PLA | 0 | 6 046 | 1.055 4 | 0.050 | 0.005 |
5 | 5 370 | 1.144 0 | 0.017 | 0 | |
10 | 4 202 | 1.368 9 | 0 | 0 | |
DMs | 0 | — | — | 0.010 | 0.055 |
5 | — | — | 0.056 | 0.124 | |
10 | — | — | 0.074 | 0.230 |
样品 | 降解时间/d | Mw | PDI | 丙交酯 含量/% | 乳酸 含量/% |
---|---|---|---|---|---|
mPEG⁃PLA | 0 | 6 046 | 1.055 4 | 0.050 | 0.005 |
5 | 5 370 | 1.144 0 | 0.017 | 0 | |
10 | 4 202 | 1.368 9 | 0 | 0 | |
DMs | 0 | — | — | 0.010 | 0.055 |
5 | — | — | 0.056 | 0.124 | |
10 | — | — | 0.074 | 0.230 |
1 | Manavitehrani I, Fathi A, Badr H, et al. Biomedical applications of biodegradable polyesters[J]. Polymers (Basel), 2016, 8(1): 1⁃32. |
2 | 刘磊, 吴若峰. 聚乳酸类材料的水解特性[J]. 合成材料的老化与应用, 2006, 35(1): 44⁃48. |
LIU L, WU R F. Hydrolytic Properties of PLAs[J]. Synthetic Materials Aging and Application, 2006, 35(1): 44⁃48. | |
3 | Chawla A S, Chang T M. In⁃vivo degradation of poly(lactic acid) of different molecular weights[J]. Biomaterials, Medical Devices, and Artificial Organs, 1985, 13(3/4): 153⁃162. |
4 | Wanamaker C L, Tolman W B, Hillmyer M A. Hydroly⁃tic degradation behavior of a renewable thermoplastic elastomer[J]. Biomacromolecules, 2009, 10(2): 443⁃448. |
5 | 祁金, 熊成东, 张丽芳. 不同含量的NBG对NBG/PLGA复合材料等温结晶、形貌和力学性能的影响[J]. 西北师范大学学报(自然科学版), 2016, 52(6): 70⁃77. |
QI J, XIONG C D, ZHANG L F. Effect of different content of NBG on the isothermal crystallization,morphology and mechanical property of NBG/PLGA composites[J]. Journal of Northwest Normal University(Natural Science), 2016, 52(6): 70⁃77. | |
6 | Huang T, Miura M, Nobukawa S, et al. Crystallization behavior and dynamic mechanical properties of poly(lactic acid) with poly(ethylene glycol) terminated by benzoate[J]. Journal of Polymers and the Environment, 2014, 22(2): 183⁃189. |
7 | Jong S J D, Eerdenbrugh B V, Nostrum C F V, et al. Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers⁃degradation and protein release behavior[J]. Journal of Controlled Release, 2001, 71(3): 261⁃275. |
8 | De Jong S J, Arias E R, Rijkers D T S, et al. New insights into the hydrolytic degradation of poly(lactic acid) participation of the alcohol terminus[J]. 2001, 42(7): 2 795⁃2 802. |
9 | Hu Y, Hu Y S, Topolkaraev V, et al. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol) [J]. Polymer, 2003, 44(19): 5 681⁃5 689. |
10 | Hu Y, Hu Y S, Topolkaraev V, et al. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity[J]. Polymer, 2003, 44(19): 5 711⁃5 720. |
11 | Zahir L, Kida T, Tanaka R, et al. Synthesis of thermoplastic elastomers with high biodegradability in seawater[J]. Polymer Degradation and Stability, 2021, 184:109467. |
12 | Zhao Y, Zhang Y, Li Z, et al. Rheology, mechanical properties and crystallization behavior of glycidyl methacrylate grafted poly(ethylene octene) toughened poly(lactic acid) blends[J]. Korean Journal of Chemical Enginee⁃ring, 2016, 33(3): 1 104⁃1 114. |
13 | Yao M, Deng H, Mai F, et al. Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride[J]. Express Polymer Letters, 2011, 5(11): 937⁃949. |
14 | Kowalczyk M, Piorkowska E, Dutkiewicz S, et al. Toughening of polylactide by blending with a novel random aliphatic⁃aromatic copolyester[J]. European Polymer Journal, 2014, 59: 59⁃68. |
15 | Castillejos S, Cerna J, Melendez F, et al. Bulk modification of poly(lactide) (PLA) via copolymerization with poly(propylene glycol) diglycidylether (PPGDGE)[J]. Polymers, 2018, 10(11): 1184. |
16 | Wang Y, Wang J H, Bai J H, et al. Synthesis, characteri⁃zation, and micellization behavior of poly(L⁃lactide) and poly(ethylene glycol) block copolymers in the presence of a novel organocatalyst[J]. Journal of Polymer Materials, 2018, 35(4): 393⁃408. |
17 | Chang Y, Chen Z Z, Yang Y Q. One⁃pot versatile synthesis of branched⁃multiblock copolymers based on polylactide and poly(epsilon⁃caprolactone)[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 242⁃249. |
18 | Chaos A, Sangroniz A, Fernandez J, et al. Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock copolymers. Effect on free volume and barrier properties[J]. Journal of Applied Polymer Scien⁃ce, 2020, 137(28): 48868. |
19 | Pooch F, Sliepen M, Knudsen K D, et al. Poly(2⁃isopropyl⁃2⁃oxazoline)⁃b⁃poly(lactide) (PiPOx⁃b⁃PLA) Nanoparticles in water: interblock van der waals attraction opposes amphiphilic phase separation[J]. Macromolecules, 2019, 52(3): 1 317⁃1 326. |
20 | 张矿生, 唐梅荣, 薛小佳, 等. 聚乳酸_聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1 181⁃1 190. |
ZHANG K S, TANG M R, XUE X J, et al. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends[J].CIESC Journal, 2021, 72(2): 1 181⁃1 190. | |
21 | Wang B, Hina K, Zou H T, et al. Thermal, crystallization, mechanical and decomposition properties of poly(lactic acid) plasticized with poly (ethylene glycol) [J]. Journal of Vinyl & Additive Technology, 2018, 24: 154⁃163. |
22 | 陈文娜, 杨建, 王身国, 等. 聚丙交酯_聚乙二醇多嵌段共聚物的合成及其性能[J]. 高分子学报, 2002, 5: 695⁃698. |
CHEN W N, YANG J, WANG S G,et al. Synthesis and properties of poly(L⁃lactide)⁃poly(ethylene glycol) multiblock copolymers[J]. Acta Polymerica Sinica, 2002, 5: 695⁃698. | |
23 | Stefani M, Coudane J, Vert M. In vitro ageing and degradation of PEG⁃PLA diblock copolymer⁃based nanoparticles [J]. Polymer Degradation and Stability, 2006, 91(11): 2 554⁃2 559. |
24 | 陈红丽, 贝建中, 王身国. 生物降解高分子——聚己内酯/聚氧乙烯/聚丙交酯三元共聚物水解行为的研究[J]. 高分子学报, 2000, 5: 626⁃631. |
CHEN H L, BEI J Z, WANG S G. Study on biodegradation behavior of PCL/PEO/PLA tricomponent copolymer[J]. Acta Polymerica Sinica, 2000, 5: 626⁃631. | |
25 | Dimitrov I V, Berlinova I V, Michailova V I. Synthesis of multifunctional poly(D,L⁃lactide)⁃poly(oxyethylene)⁃poly(D,L⁃lactide) triblock copolymers[J]. Polymer Journal, 2013, 45(4): 457⁃461. |
26 | Xu Du, Qin Wang, Dong Chuan, et al. Synthesis and self⁃assembly study of biodegradable amphiphilic triblock copolymers with PEG block[J]. Advanced Materials Research, 2014, 998/999(1): 95⁃98. |
27 | Kubisa P, Lapienis G, Biela T. Star⁃shaped copolymers with PLA⁃PEG arms and their potential applications as biomedical materials[J]. Polymers for Advanced Technolo⁃gies, 2021, 32(10): 3 857⁃3 866. |
28 | Shi M, Gu A, Tu H, et al. Comparing nanoparticle polymeric micellar paclitaxel and solvent⁃based paclitaxel as first⁃line treatment of advanced non⁃small⁃cell lung cancer: an open⁃label, randomized, multicenter, phase III trial[J]. Ann Oncol, 2021, 32(1): 85⁃96. |
[1] | SONG Dejian, YU Peng, PENG Jinsong, XU Miaojun. Preparation of flame retardant EVA hot melt adhesive and its application in repairing cables [J]. China Plastics, 2022, 36(9): 53-56. |
[2] | MA Chao, MA Lanrong, WEI Liao, YIN Huibo, LIN Xiang. A review of modification processing and water⁃soluble degradation ability of polyglycolic acid material [J]. China Plastics, 2022, 36(9): 74-84. |
[3] | MA Guocheng, HE Zhen, CHEN Shaojun. Research progress in degradability of cellulose acetate [J]. China Plastics, 2022, 36(9): 111-121. |
[4] | LIN Jianhui, LU Jiahui, WU Xinying, FAN Xueying, DENG Guirong, GAO Liang, MEI Chengfang, YANG Yonggang. Study of uncertainty evaluation in determination of ultimate aerobic biodegradability of degradable materials under controlled composting conditions [J]. China Plastics, 2022, 36(9): 140-147. |
[5] | ZHANG Bing. Study on test of oxidation induction time for random copolymer polypropylene pipe [J]. China Plastics, 2022, 36(8): 107-109. |
[6] | ZHU Zixuan, LIU Haifen, FAN Jiazhao, LI Huafeng, WANG Lixin. Research progress of adhesive materials and co⁃extrusion adhesion technology for photovoltaic backsheet [J]. China Plastics, 2022, 36(7): 174-186. |
[7] | WU Xiongjie, ZHU Dongbo, SUN Jiangbo, GAO Longmei, CHU Yu, CHENG Jinsong, XIE Aidi. Study on application performance of polyethylene/CaSO4 nanoparticle composite flexible packaging [J]. China Plastics, 2022, 36(6): 10-15. |
[8] | WEI Liao. Research progress in application of water⁃soluble polymer materials for oil and gas field fracturing [J]. China Plastics, 2022, 36(5): 149-157. |
[9] | LI Suyuan, LIU Huipeng, GONG Shun, HUANG Guotao, LI Yucai, WU Xin, DENG Jianping, PAN Kai. Preparation and characterization of EVA foaming materials modified with thermoplastic polyamide elastomer [J]. China Plastics, 2022, 36(4): 6-14. |
[10] | LIU Qiang, LU Yahong, WU Hui, MA Yuhao, ZHANG Yupeng, SUN Wenxiao, ZHANG Hong. Microbial degradation of polyethylene plastics [J]. China Plastics, 2022, 36(3): 120-126. |
[11] | CHENG Manfang, BAI Jifeng, WANG Wenqing, LEI Liangcai, LI Haiying, HAN Xiangyan, HU Yuexin. Preparation and characterizations of polymeric ionic liquid blending system based on hyperbranched poly(p⁃chloromethylstyrene) [J]. China Plastics, 2022, 36(3): 40-47. |
[12] | CAO Zhifeng, ZHAO Lipin, HE Ting, MA Baijun. Preparation and properties of five⁃layer co⁃extrusion barrier films [J]. China Plastics, 2022, 36(3): 64-68. |
[13] | JIN Qingping, YI Jianming, GAO Yonghong, CAO Nannan, DENG Siyuan. Effect on mechanical properties of glass⁃fiber⁃reinforcement polymer bars exposure to alkaline solution under natural ambient temperature [J]. China Plastics, 2022, 36(2): 89-95. |
[14] | HE Xuetao, ZHANG Yi, MO Zhenyu, LI Changjin, WANG Shuo, YANG Weimin, LI Haoyi. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1-5. |
[15] | ZHEN Jian, GAO Zhiwu. Structures and properties of PP⁃RCT tube materials with high⁃pressure level [J]. China Plastics, 2022, 36(12): 57-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||