京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (3): 120-126.DOI: 10.19491/j.issn.1001-9278.2022.03.019
• Plastic and Environment • Previous Articles Next Articles
LIU Qiang1,2, LU Yahong1,2, WU Hui1,2, MA Yuhao1,2, ZHANG Yupeng1,2, SUN Wenxiao1,2, ZHANG Hong1,2()
Received:
2021-11-09
Online:
2022-03-26
Published:
2022-03-25
CLC Number:
LIU Qiang, LU Yahong, WU Hui, MA Yuhao, ZHANG Yupeng, SUN Wenxiao, ZHANG Hong. Microbial degradation of polyethylene plastics[J]. China Plastics, 2022, 36(3): 120-126.
菌属(种)名称 | 来源 | 实验时间/d | 生物降解结果 | 参考文献 |
---|---|---|---|---|
Enterobacter asburiae.YT1 | 印度粉虱 | 60 | 质量损失(6.1±0.3)% | [ |
Bacillus sp.YP1 | 印度粉虱 | 60 | 质量损失(10.7±0.2)% | [ |
Pseudomonassp. MMP1,Acinetobactersp. MGP1,Bacillussp. MMP10,Bacillussp.MGP1 | 垃圾处理场 | 42 | 质量损失3.75 % | [ |
Bacillus cereus strain A5, a (MG645264) Brevibacillus borstelensis strain B2,2(MG645267) | 垃圾处理场 垃圾处理场 | 112 112 | 质量损失(35.72±4.01)% 质量损失(20.28±2.30)% | [ [ |
Lomamonas | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Delftia | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Stenotrophomonas | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Paenibacillus sp. (mixed flora) | 垃圾处理厂 | 60 | 质量损失14.7 % | [ |
Aneurinibacillus sp.(mixed flora) | 土壤 | 140 | 质量损失(58.21±2)% | [ |
Bacillus amyloliquefaciens (BSM⁃1) | 固体废物堆埋场 | 60 | 质量损失11 % | [ |
Bacillus amyloliquefaciens (BSM⁃2) | 固体废物堆埋场 | 60 | 质量损失16 % | [ |
P. knackmussii N1⁃2 | 污水处理厂 | 80 | 质量损失(5.95±0.03)% | [ |
B.siamensis | 垃圾处理厂 | 90 | 质量损失(8.46±0.3)% | [ |
B.cereus | 垃圾处理厂 | 90 | 质量损失(6.33±0.2)% | [ |
B.wiedmannil | 垃圾处理厂 | 90 | 质量损失(5.39±0.3)% | [ |
B.subtilis | 垃圾处理厂 | 90 | 质量损失(3.75±0.1)% | [ |
P.aeruginosa | 垃圾处理厂 | 90 | 质量损失(1.15±0.1)% | [ |
A.iwoffii | 垃圾处理厂 | 90 | 质量损失(0.76±0.1)% | [ |
菌属(种)名称 | 来源 | 实验时间/d | 生物降解结果 | 参考文献 |
---|---|---|---|---|
Enterobacter asburiae.YT1 | 印度粉虱 | 60 | 质量损失(6.1±0.3)% | [ |
Bacillus sp.YP1 | 印度粉虱 | 60 | 质量损失(10.7±0.2)% | [ |
Pseudomonassp. MMP1,Acinetobactersp. MGP1,Bacillussp. MMP10,Bacillussp.MGP1 | 垃圾处理场 | 42 | 质量损失3.75 % | [ |
Bacillus cereus strain A5, a (MG645264) Brevibacillus borstelensis strain B2,2(MG645267) | 垃圾处理场 垃圾处理场 | 112 112 | 质量损失(35.72±4.01)% 质量损失(20.28±2.30)% | [ [ |
Lomamonas | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Delftia | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Stenotrophomonas | 土壤中的塑料碎屑 | 90 | 结晶度降低 | [ |
Paenibacillus sp. (mixed flora) | 垃圾处理厂 | 60 | 质量损失14.7 % | [ |
Aneurinibacillus sp.(mixed flora) | 土壤 | 140 | 质量损失(58.21±2)% | [ |
Bacillus amyloliquefaciens (BSM⁃1) | 固体废物堆埋场 | 60 | 质量损失11 % | [ |
Bacillus amyloliquefaciens (BSM⁃2) | 固体废物堆埋场 | 60 | 质量损失16 % | [ |
P. knackmussii N1⁃2 | 污水处理厂 | 80 | 质量损失(5.95±0.03)% | [ |
B.siamensis | 垃圾处理厂 | 90 | 质量损失(8.46±0.3)% | [ |
B.cereus | 垃圾处理厂 | 90 | 质量损失(6.33±0.2)% | [ |
B.wiedmannil | 垃圾处理厂 | 90 | 质量损失(5.39±0.3)% | [ |
B.subtilis | 垃圾处理厂 | 90 | 质量损失(3.75±0.1)% | [ |
P.aeruginosa | 垃圾处理厂 | 90 | 质量损失(1.15±0.1)% | [ |
A.iwoffii | 垃圾处理厂 | 90 | 质量损失(0.76±0.1)% | [ |
菌属(种)名称 | 来源 | 实验时间/d | 生物降解结果 | 参考文献 |
---|---|---|---|---|
Aspergillus tubingensis VRKPT1 | 沿海地区的PE废物处理厂 | 30 | 质量损失(6.02±0.2)% | [ |
Aspergillus flavus VRKPT2 | 沿海地区的PE废物处理厂 | 30 | 质量损失(8.51±0.1)% | [ |
Zalerion maritimum | 海洋 | 28 | PE颗粒质量降低 | [ |
Aspergillus clavatus JASK1 | 垃圾填埋场 | 90 | 质量损失25 % | [ |
Aspergillus flavus PEDX3 | 土壤 | 28 | 质量损失(3.902 5±1.18)% | [ |
Phanerochaete chrysosporium | 土壤 | 180 | 晶体形态发生改变 | [ |
Fusarium sp.FSM⁃3 | 土壤中的PE碎片 | 60 | 质量损失8 % | [ |
Fusarium sp.FSM⁃6 | 土壤中的PE碎片 | 60 | 质量损失7 % | [ |
Fusarium sp.FSM⁃5 | 土壤中的PE碎片 | 60 | 质量损失5 % | [ |
Fusarium sp.FSM⁃8 | 土壤中的PE碎片 | 60 | 质量损失7 % | [ |
Aspergillus sp.FSM⁃10 | 土壤中的PE碎片 | 60 | 质量损失9 % | [ |
菌属(种)名称 | 来源 | 实验时间/d | 生物降解结果 | 参考文献 |
---|---|---|---|---|
Aspergillus tubingensis VRKPT1 | 沿海地区的PE废物处理厂 | 30 | 质量损失(6.02±0.2)% | [ |
Aspergillus flavus VRKPT2 | 沿海地区的PE废物处理厂 | 30 | 质量损失(8.51±0.1)% | [ |
Zalerion maritimum | 海洋 | 28 | PE颗粒质量降低 | [ |
Aspergillus clavatus JASK1 | 垃圾填埋场 | 90 | 质量损失25 % | [ |
Aspergillus flavus PEDX3 | 土壤 | 28 | 质量损失(3.902 5±1.18)% | [ |
Phanerochaete chrysosporium | 土壤 | 180 | 晶体形态发生改变 | [ |
Fusarium sp.FSM⁃3 | 土壤中的PE碎片 | 60 | 质量损失8 % | [ |
Fusarium sp.FSM⁃6 | 土壤中的PE碎片 | 60 | 质量损失7 % | [ |
Fusarium sp.FSM⁃5 | 土壤中的PE碎片 | 60 | 质量损失5 % | [ |
Fusarium sp.FSM⁃8 | 土壤中的PE碎片 | 60 | 质量损失7 % | [ |
Aspergillus sp.FSM⁃10 | 土壤中的PE碎片 | 60 | 质量损失9 % | [ |
1 | REN W, WIERCKX N. Editorial: microbial degradation of plastics[J]. Frontiers in Microbiology, 2021, 12(1):635621. |
2 | 马兆嵘、刘有胜、张芊芊. 农用塑料薄膜使用现状与环境污染分析[J]. 生态毒理学报, 2020, 15(4):21⁃32. |
MA Z R, LIU Y S, ZHANG Q Q,et al. The usage and environmental pollution of agricultural plastic film[J]. Asian Journal of Ecotoxicology, 2020, 15(4):21⁃32. | |
3 | RU J K, HUO Y X, YANG Y. Microbial degradation and valorization of plastic wastes[J]. Frontiers in Microbiology, 2020, 11(2): 442. |
4 | 包木太, 程媛, 陈剑侠, 等. 海洋微塑料污染现状及其环境行为效应的研究进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(11):69⁃80. |
BAO M T, CHENG Y, CHEN J X, et al. Research progress on the current status and environmental behavior effect of microplastic pollution[J]. Periodical of Ocean University of China, 2020, 50(11):69⁃80. | |
5 | KAWAI F, KAWABATA T, ODA M. Current know⁃ledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 10.1007/s00253⁃019⁃09717⁃y. |
6 | CREGUT M, BE DA S M, DURAND M J, et al. New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process[J]. Biotechnology Advances, 2013, 31(8):1 634⁃1 647. |
7 | JAISWAL S, SHARMA B, SHUKLA P. Integrated approaches in microbial degradation of plastics[J]. Environmental Technology & Innovation, 2019, 17(7):100567. |
8 | RESTREPO⁃FLÓREZ J M, BASSI A, THOMPSON MR. Microbial Degradation and Deterioration of Polyethylene—a review[J]. International Biodeterioration & Biodegradation, 2014, 88(6):83⁃90. |
9 | MONTAZER Z, NAJAFI M, LEVIN D B. Challenges with verifying microbial degradation of polyethylene[J]. Polymers, 2020, 12(1): 10.3390/polym12010123. |
10 | DANSO D, CHOW J, STREIT W R. Plastics: microbial degradation, environmental and biotechnological perspectives[J]. Applied and Environmental Microbiology, 2019, 85(19): 10.1128/AEM.01095⁃19. |
11 | DELACUVELLERIE A, GOBERT S, BENALI S, et al. The plastisphere in marine ecosystem hosts potential specific microbial degraders including alcanivorax borkumensis as a key player for the low⁃density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380(3):120899. |
12 | SARMAH P, ROUT J. Efficient biodegradation of low⁃density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water[J]. Environmental Science and Pollution Research, 2018, 25(7): 10.1007/s11356⁃018⁃3079⁃7. |
13 | LI Z, WEI R, GAO M, et al. Biodegradation of low⁃density polyethylene by microbulbifer hydrolyticus IRE⁃31[J]. Journal of Environmental Management, 2020, 263(C):110402. |
14 | KOWALCZYK A, CHYC M, RYSZKA P, et al. Achromobacter xylosoxidans as a new microorganism strain colonizing high⁃density polyethylene as a key step to its biodegradation[J]. Environmental Science & Pollution Research International, 2016, 23(11):11 349⁃11 356. |
15 | NDAHEBWA MUHONJA C, HUXLEY M, GABRIEL M, et al. Biodegradability of polyethylene by bacteria and fungi from dandora dumpsite nairobi⁃kenya[J]. Plos One, 2018, 13(7): e0198446. |
16 | MAROOF L, KHAN I, HAN S Y, et al. Identification and characterization of low density polyethylene⁃degrading bacteria isolated from soils of waste disposal sites[J]. Environmental Engineering Research, 2020, 26(3):200167. |
17 | YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic⁃eating waxworms[J]. Environmental Science & Technology, 2014, 48(23): 13 776⁃13 784. |
18 | KUNLERE I O, FAGADE O E, NWADIKE B I. Biodegradation of low density polyethylene (LDPE) by certain indigenous bacteria and fungi[J]. International Journal of Environmental Studies, 2019, 76(3):1⁃13. |
19 | PEIXOTO J, SILVA L P, KRÜGER R H. Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation[J]. Journal of Hazardous Materials, 2016, 324(B):634⁃644. |
20 | PARK S Y Z, KIM C G. Biodegradation of micro⁃polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222:527⁃533. |
21 | SKARIYACHAN S, PATIL A A, SHANKAR A, et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of brevibacillus sps. and aneurinibacillussp screened from waste management landfills and sewage treatment plants[J]. Polymer Degradation & Stability, 2018, 149(5):52⁃68. |
22 | MERINA P, DAS, KUMAR S. Influence of cell surface hydrophobicity in colonization and biofilm formation on ldpe biodegradation[J]. International Journal of Pharmacy and Pharmaceutical Sciences, 2013, 5(4):690⁃694. |
23 | LHA C, JIAO X A, JL A, et al. Biodegradability of polyethylene mulching film by two pseudomonas bacteria and their potential degradation mechanism[J]. Chemosphere, 2021, 286(2474176):131758. |
24 | PARRALES A R, ORANTES⁃SIBAJA T, REDONDO⁃GÓMEZCARLOS, et al. Biological degradation of plastics: polyethylene biodegradation by aspergillus and streptomyces species—a review[M]//REDONDO⁃GÓMEZ C: Integrated and Sustainable Environmental, 2018:69⁃79. |
25 | 李夏, 顾文杰, 杨少海,等. 一株地膜降解真菌的筛选及其降解性能分析[J].微生物学报, 2019, 59(01):56⁃67. |
LI X, GU W J, YANG S H, et al. Screening of a plastic mulch film degrading fungus[J]. Acta Microbiologica Sinica, 2019, 59(01):56⁃67. | |
26 | SÁNCHEZ C. Fungal potential for the degradation of petroleum⁃based polymers: an overview of macro⁃ and microplastics biodegradation[J]. Biotechnology Advances, 2019, 40(19):107501. |
27 | KUMAR S, DAS M P. Microbial deterioration of low density polyethylene by aspergillus and fusarium sp[J]. International Journal of ChemTech Research, 2014, 6(1):974⁃4 290. |
28 | GAJENDIRAN A, KRISHNAMOORTHY S, ABRAHAM J. Microbial degradation of low⁃density polyethy⁃lene (PE⁃LD) by aspergillus clavatus strain JASK1 isolated from landfill soil[J]. Biotech, 2016, 6(1):52. |
29 | ZHANG J Q, GAO D L, LI Q H, ai et. Biodegradation of polyethylene microplastic particles by the fungus aspergillus flavus from the guts of wax moth galleria mellonella[J]. The Science of the Total Environment, 2020, 704(20): 10.1016/j.scitotenv.2019.135931. |
30 | DEVI R S, KANNAN V R, NIVAS D, et al. Biodegradation of HDPE by aspergillus spp. from marine ecosystem of gulf of mannar, India[J]. Marine Pollution Bulletin, 2015, 96(1/2):32⁃40. |
31 | ANA, PAÇO, KÁTIA, et al. Biodegradation of polyethy⁃lene microplastics by the marine fungus zalerion maritimum[J]. Science of the Total Environment, 2017, 586(5):10⁃15. |
32 | ORHAN Y, HANIFE B. Enhancement of biodegradability of disposable polyethylene in controlled biological soil[J]. International Biodeterioration & Biodegradation, 2000, 45(1/2):49⁃55. |
33 | SOLEIMANI Z, GHARAVI S, SOUDI M, et al. A survey of intact low⁃density polyethylene film biodegradation by terrestrial actinobacterial species[J]. International Microbiology, 2020, 24(6):1⁃9. |
34 | LWANGA E H, THAPA B, YANG X, et al. Decay of low⁃density polyethylene by bacteria extracted from earthworm's guts: a potential for soil restoration[J]. Science of The Total Environment, 2018, 624(6):753⁃757. |
35 | 沈萍, 陈向东. 微生物学[M].第二版. 北京: 高等教育出版社, 2006: 2. |
36 | HAN Y N, WEI M, HAN F, et al. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of arthrobacter sp. and streptomyces sp[J]. Microorganisms, 2020, 8(12): 10.3390/microorganisms8121979. |
37 | KITAHARA K I, NAKATA H. Plastic additives as tracers of microplastic sources in japanese road dusts[J]. Science of The Total Environment, 2020, 736(7):139694. |
38 | GHATGE S, YANG Y, AHN J H, et al. Biodegradation of polyethylene: a brief review[J]. Applied Biological Chemistry, 2020, 63(1):27. |
[1] | LI Guo, ZHU Huihao, MA Yulu, WANG Yu, JI Huajian, XIE Linsheng. Preparation and properties of microporous breathable films with high thermal conductivity [J]. China Plastics, 2022, 36(7): 14-20. |
[2] | LIN Wen, ZHAO Jingjing, SU Tingting, WANG Zhanyong. Research progress in biodegradation of polystyrene [J]. China Plastics, 2022, 36(7): 143-149. |
[3] | WU Xiongjie, ZHU Dongbo, SUN Jiangbo, GAO Longmei, CHU Yu, CHENG Jinsong, XIE Aidi. Study on application performance of polyethylene/CaSO4 nanoparticle composite flexible packaging [J]. China Plastics, 2022, 36(6): 10-15. |
[4] | LEI Yujie, CHEN Minghuan, WANG Jieyao, CHEN Wangzhi, LI Lei. Cross⁃linked foaming process and performance of recycled polyethylene [J]. China Plastics, 2022, 36(6): 124-129. |
[5] | ZHU Jingyun, YI Huijun, YAN Wei, LI Dawei. Research and development of polyethylene special materials for compound films [J]. China Plastics, 2022, 36(6): 77-80. |
[6] | XIA Yunxia, LI Lei, LUO Zhangsheng, ZHU Qianqin, HE Lijun. Preparation and properties of recycled polyethylene non⁃woven fabrics based on flash evaporation [J]. China Plastics, 2022, 36(5): 14-18. |
[7] | WEI Liao. Research progress in application of water⁃soluble polymer materials for oil and gas field fracturing [J]. China Plastics, 2022, 36(5): 149-157. |
[8] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[9] | WEN Yuan, MAO Xianpeng, XU Kejie. Effect of sample thickness on tensile properties of polyethylene [J]. China Plastics, 2022, 36(4): 43-46. |
[10] | XU Rongxia, WEI Gang, WEI Lilan, WU Jiecui, JIANG Yujiang. Friction and wear properties of PE⁃UHMW modified with nano⁃SiO2 and PA6 [J]. China Plastics, 2022, 36(4): 47-52. |
[11] | HENG Yue, XUE Nanxiang, CHEN Zhuangxin, LEI Caihong, XU Ruijie. Dynamic rheological behavior and compatibility of polyethylene/paraffin oil blends [J]. China Plastics, 2022, 36(2): 13-18. |
[12] | ZHANG Xuemin, HOU Lin, FENG Jinmao, YAO Zhongliang, ZHONG Mingqiang. Study on natural aging behavior of buried polyethylene water supply pipeline in service [J]. China Plastics, 2022, 36(2): 49-55. |
[13] | LI Bo, GONG Jun, JIN Xueyi, MENG Xiaoyu. Effect of carbon nanotube modification method on properties of polyamide 11 [J]. China Plastics, 2022, 36(2): 61-66. |
[14] | LI Yongqing, YANG Xiaolong, CHEN Wenjing, YAN Xiaokun, MA Xiuqing. Molecular dynamics simulation of modifier and high⁃density polyethylene intercalate and exfoliate montmorillonite [J]. China Plastics, 2022, 36(2): 67-74. |
[15] | JIN Qingping, YI Jianming, GAO Yonghong, CAO Nannan, DENG Siyuan. Effect on mechanical properties of glass⁃fiber⁃reinforcement polymer bars exposure to alkaline solution under natural ambient temperature [J]. China Plastics, 2022, 36(2): 89-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||