京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2020, Vol. 34 ›› Issue (5): 107-114.DOI: 10.19491/j.issn.1001-9278.2020.05.017
• Review • Previous Articles Next Articles
Received:
2020-02-19
Online:
2020-05-26
Published:
2020-05-22
CLC Number:
Jingyu WANG, Jianwei HAO. Research Progress in Halogen⁃free Flame⁃retardant RPUF[J]. China Plastics, 2020, 34(5): 107-114.
样品 | 表观密度/kg?m?3 | 极限氧指数/% | 压缩强度/kPa | 导热系数/ W?(m?K)-1 | 吸水率/% | 生物降解度/% |
---|---|---|---|---|---|---|
商用泡沫 | 36.0~42.0 | 19.2 | >250 | 0.028 | <3.00 | ?? |
RPU?PIR | 38.4±1.1 | 21.7 | 289.95±7.46 | 0.025 | 1.81±0.06 | 39.0 |
RPU?PIR/14 %TCMP | 35.9±1.3 | 25.6 | 303.67±5.32 | 0.025 | 0.96±0.03 | 74.1 |
样品 | 表观密度/kg?m?3 | 极限氧指数/% | 压缩强度/kPa | 导热系数/ W?(m?K)-1 | 吸水率/% | 生物降解度/% |
---|---|---|---|---|---|---|
商用泡沫 | 36.0~42.0 | 19.2 | >250 | 0.028 | <3.00 | ?? |
RPU?PIR | 38.4±1.1 | 21.7 | 289.95±7.46 | 0.025 | 1.81±0.06 | 39.0 |
RPU?PIR/14 %TCMP | 35.9±1.3 | 25.6 | 303.67±5.32 | 0.025 | 0.96±0.03 | 74.1 |
样品 | 单元结构元素质量比/% | 热分解温度/℃ | 600 ℃残炭率/% |
---|---|---|---|
木质素 | C, > 60 | 230~260 | 57.0 |
纤维素 | C/O, 44.4/49.4 | ~270 | 9.5 |
植酸 | P/O/C, 28.0/59.0/9.0 | 255 | ~50 |
DNA | C/P/N/O, 37.1/9.8/16.7/33.0 | 150~200 | ~50 |
样品 | 单元结构元素质量比/% | 热分解温度/℃ | 600 ℃残炭率/% |
---|---|---|---|
木质素 | C, > 60 | 230~260 | 57.0 |
纤维素 | C/O, 44.4/49.4 | ~270 | 9.5 |
植酸 | P/O/C, 28.0/59.0/9.0 | 255 | ~50 |
DNA | C/P/N/O, 37.1/9.8/16.7/33.0 | 150~200 | ~50 |
1 | MOHAMMAD S A H. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials [J]. Building and Environment, 2005, 40: 353⁃366. |
2 | 费梅花,恽 晨. 挤塑聚苯乙烯泡沫板压缩强度控制研究 [J]. 中国塑料, 2014, 28(7): 72⁃76. |
FEI M H, YUN C. Controlling of Compressive Strength of XPS [J]. China Plastics, 2014, 28(7): 72⁃76. | |
3 | 韩 景,任海涛,李婷婷,等. 蒸馏水含量对三明治结构硬质聚氨酯泡沫性能的影响 [J]. 中国塑料, 2018, 32(12): 20⁃25. |
HAN J,REN H T,LI T T, et al. Influence of Water Content on Properties of Sandwich Polyurethane Foam [J]. China Plastics, 2018, 32(12): 20⁃25. | |
4 | BERND W, ANDRAŽ K, GERMAN S A, et al. Thermally Insulating and Fire⁃retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide [J]. Nature Nanotechnology, 2015, 10(3): 277⁃283. |
5 | 刘 秀, 刘国胜, 郝建薇, 等. 阻燃硬质聚氨酯泡沫燃烧热值对阻燃性能的影响 [J]. 北京理工大学学报, 2015, 35(2): 197⁃202. |
LIU X, LIU G S, HAO J W, et al. Effect of Heat of Combustion on Flame Retardancy of Rigid Polyurethan Foams [J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 197⁃202. | |
6 | RICHARD N W, RICHARD E L. Molar Group Contributions to Polymer Flammability [J]. Journal of Applied Polymer Science, 2003, 87: 548⁃563. |
7 | 侯 静. 我国城镇公共建筑能耗预测及能效提升路径研究 [D]. 北京: 北京交通大学, 2017. |
8 | 秦 颖, 梁 广. 我国建筑绝热节能材料现状及趋势研究 [J]. 硅酸盐通报, 2018, 37(12): 3 849⁃3 853. |
QIN Y, LIANG G. Research on the Current Situation and Trend of the Building Energy⁃Saving Insulation Materials in China [J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3 849⁃3 853. | |
9 | IKE V D V, JACOB D B. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis [J]. Chemosphere, 2012, 88: 1119⁃1153. |
10 | ROLAND G, JENNA R J, KARA L L. Production, Use, and Fate of All Plastics Ever Made [J]. Science Advances. 2017, 3(7): 700 782. |
11 | YUAN Y, YU B, SHI Y Q, et al. Highly Efficient Catalysts for Reducing Toxic Gases Generation Change with Temperature of Rigid Polyurethane Foam Nanocompo⁃sites: A Comparative Investigation [J]. Composites Part A, 2018, 112: 142⁃154. |
12 | BERNHARD S, KRISTIN H P, RICHARD E L. Pyrolysis Combustion Flow Calorimeter: A Tool to Assess Flame Retarded PC/ABS Materials? [J]. Thermochimica Acta, 2007, 462: 1⁃14. |
13 | 许冬梅, 郝建薇, 刘国胜, 等. 膨胀阻燃硬质聚氨酯泡沫塑料热降解及燃烧产烟研究 [J]. 高分子学报, 2013,7: 832⁃840. |
XU D M, HAO J W, LIU G S, et al. Thermal Degradation and Smoke Production during Combustion for Intumescent Flame Retardant Rigid Polyurethane Foams[J]. Acta Polymerica Sinica, 2013,7: 832⁃840. | |
14 | DK C, DEAN C W. Thermal Stability and Flame Retardancy of Polyurethanes [J]. Progress in Polymer Science, 2009, 34: 1 068⁃1 133. |
15 | KIM J Y, LEE H W, LEE S M, et al. Overview of the Recent Advances in Lignocellulose Liquefaction for Producing Biofuels, Bio⁃based Materials and Chemicals [J]. Bioresource Technology, 2019, 279: 373⁃384. |
16 | ZHANG L Q, ZHANG M, ZHOU Y H, et al. The Study of Mechanical Behavior and Flame Retardancy of Castor Oil Phosphate⁃based Rigid Polyurethane Foam Composites Containing Expanded Graphite and Triethyl Phosphate [J]. Polymer Degradation and Stability, 2013, 98:2 784⁃2 794. |
17 | CHEN M J, WANG X, TAO M C, et al. Full Substitution of Petroleum⁃based Polyols by Phosphoruscontaining Soy⁃based Polyols for Fabricating Highly Flame⁃retardant Polyisocyanurate Foams [J]. Polymer Degradation and Stability, 2018,154: 312⁃322. |
18 | BOROWICZ M, PACIOREK⁃SADOWSKA J, LUBCZAK J, et al. Biodegradable, Flame⁃Retardant, and Bio⁃Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application [J]. Polymers, 2019, 11(11): 1 816. |
19 | DOREZ G, FERRY L, SONNIER R, et al. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers [J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 323⁃331. |
20 | GAO Y Y, DENG C, DU Y Y, et al. A Novel Bio⁃based Flame Retardant for Polypropylene from Phytic Acid [J]. Polymer Degradation and Stability, 2019, 161: 298⁃308. |
21 | ALONGI J, BLASIO A D, MILNES J, et al. Thermal Degradation of DNA, an All⁃in⁃one Natural Intumescent Flame Retardant [J]. Polymer Degradation and Stability, 2015, 113: 110⁃118. |
22 | COSTES L, LAOUTID F, BROHEZ S, et al. Bio⁃based Flame Retardants: When Nature Meets Fire Protection [J]. Materials Science and Engineering R, 2017, 117: 1⁃25. |
23 | LU W M, LI Q, ZHANG Y, et al. Lignosulfonate/APP IFR and Its Flame Retardancy in Lignosulfonate Based Rigid Polyurethane Foams [J]. Journal of Wood Science, 2018, 64: 287⁃293. |
24 | ZHU H B, PENG Z M, CHEN Y M, et al. Preparation and Characterization of Flame Retardant Polyurethane Foams Containing Phosphorus⁃nitrogen⁃functionalized Lignin [J]. RSC Advances, 2014, 4(98): 55 271⁃55 279. |
25 | GAO L P, ZHENG G Y, ZHOU Y H, et al. Improved Mechanical Property, Thermal Performance, Flame Retardancy and Fire Behavior of Lignin⁃based Rigid Polyurethane Foam Nanocomposite [J]. Journal of Thermal Analysis and Calorimetry, 2015, 120: 1 311⁃1 325. |
26 | NADJI H, BRUZZÈSE C, BELGACEM M N, et al. Oxypropylation of Lignins and Preparation of Rigid Polyurethane Foams from the Ensuing Polyols[J]. Macromolecular Materials and Engineering, 2005, 290: 1 009⁃1 016. |
27 | PAN X J, SADDLER J N. Effect of Replacing Polyol by Organosolv and Kraft Lignin on The Property and Structure of Rigid Polyurethane Foam [J]. Biotechnology for Biofuels, 2013, 6: 12. |
28 | VISHTAL A, KRASLAWSKI A. Challenges in Industrial Applications of Technical Lignins [J]. Bioresources, 2011, 6: 3 547⁃3 568. |
29 | WANG S X, ZHAO H B, RAO W H, et al. Inherently Flame⁃retardant Rigid Polyurethane Foams with Excellent Thermal Insulation and Mechanical Properties [J]. Polymer, 2018,153: 616⁃625. |
30 | WANG C, WU Y C, LI Y C, et al. Flame⁃retardant Rigid Polyurethane Foam with a Phosphorus Nitrogen Single Intumescent Flame Retardant [J]. Polymers Advanced Technologies, 2018, 29: 668⁃676. |
31 | JIA D K, HU J, HE J Y, et al. Properties of a Novel Inherently Flame⁃retardant Rigid Polyurethane Foam Composite Bearing Imide and Oxazolidinone [J]. Journal App⁃lied Polymer Science, 2019, 136(37): 47 943. |
32 | YUAN Y, YANG H Y, YU B, et al. Phosphorus and Nitrogen⁃containing Polyols: Synergistic Effect on the Thermal Property and Flame Retardancy of Rigid Polyurethane Foam Composites [J]. Industrial and Engineering Chemistry Research, 2016, 55: 10 813⁃10 822. |
33 | XI W, QIAN L J, HUANG Z G, et al. Continuous Flame⁃retardant Actions of Two Phosphate Esters with Expandable Graphite in Rigid Polyurethane Foams[J]. Polymer Degradation and Stability, 2016, 130: 97⁃102. |
34 | XI W, QIAN L J, CHEN Y J, et al. Addition Flame⁃retardant Behaviors of Expandable Graphite and [Bis(2⁃hydroxyethyl)amino]⁃methyl⁃phosphonic Acid Dimethyl Ester in Rigid Polyurethane Foams[J]. Polymer Degradation and Stability, 2015, 122: 36⁃43. |
35 | QIAN L J, LI L J, CHEN Y J, et al. Quickly Self⁃extinguishing Flame Retardant Behavior of Rigid Polyurethane Foams Linked with Phosphaphenanthrene Groups[J]. Composites Part B, 2019, 175: 107 186. |
36 | LI Q M, WANG J Y, CHEN L M, et al. Ammonium Polyphosphate Modified with B⁃cyclodextrin Crosslinking Rigid Polyurethane Foam: Enhancing Thermal Stability and Suppressing Flame Spread [J]. Polymer Degradation and Stability, 2019, 161: 166⁃174. |
37 | HAN Z D, FINAA A, MALUCELLIA G, et al. Testing Fire Protective Properties of Intumescent Coatings by in⁃line Temperature Measurements on a Cone Calorimeter [J]. Progress in Organic Coatings, 2010, 69: 475⁃480. |
38 | WEIL E D. Fire⁃protective and Flame⁃retardant Coatings⁃A State⁃of⁃the⁃art Review [J]. Journal of Fire Sciences, 2011, 29: 259⁃296. |
39 | LI M E, WANG S X, HAN L X, et al. Hierarchically Porous SiO2/Polyurethane Foam Composites Towards Excellent Thermal Insulating, Flame⁃retardant and Smoke⁃suppressant Performances [J]. Journal of Hazardous Materials, 2019, 375: 61⁃69. |
40 | WANG S H, WANG X G, WANG X, et al. Surface Coated Rigid Polyurethane Foam with Durable Flame Retardancy and Improved Mechanical Property [J]. Chemical Engineering Journal, 2020, 385: 123 755. |
41 | LIU H Y, YANG H Y, CHEN M F, et al. An Effective Approach to Reducing Fire Hazards of Rigid Polyurethane Foam: Fire Protective Coating [J]. Journal of Coatings Technology and Research, 2019, 16 (1): 257⁃261. |
42 | HUANG Y B, JIANG S H, LIANG R C, et al. A Green Highly⁃effective Surface Flame⁃retardant Strategy for Rigid Polyurethane Foam: Transforming UV⁃cured Coating into Intumescent Selfextinguishing Layer [J]. Composites Part A, 2019, 125: 105 534. |
43 | DASARI A, YU Z Z, CAI G P, et al. Recent Developments in the Fire Retardancy of Polymeric Materials [J]. Progress in Polymer Science, 2013, 38: 1 357⁃1 387. |
44 | ZHOU Y, FENG J, PENG H, et al. Catalytic Pyrolysis and Flame Retardancy of Epoxy Resins with Solid Acid Boron Phosphate [J]. Polymer Degradation and Stability, 2014, 110: 395⁃404. |
45 | LIU X, XU D M, WANG Y L, et al. Smoke and Toxicity Suppression Properties of Ferrites on Flame⁃retardant Polyurethane–Polyisocyanurate Foams Filled with Phosphonate [J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 245⁃254. |
46 | LIU X, WANG J Y, YANG X M, et al. Application of TG/FTIR TG/MS and Cone Calorimetry to Understand Flame Retardancy and Catalytic Charring Mechanism of Boron Phosphate in Flame⁃retardant PUR–PIR Foams [J]. Journal of Thermal Analysis and Calorimetry, 2017, 130: 1 817⁃1 827. |
47 | XU W Z, WANG G S, XU J Y, et al. Modification of Diatomite with Melamine Coated Zeolitic Imidazolate Framework⁃8 as an Effective Flame Retardant to Enhance Flame Retardancy and Smoke Suppression of Rigid Polyurethane Foam [J]. Journal of Hazardous Materials, 2019, 379: 121 809. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||