京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (6): 25-30.DOI: 10.19491/j.issn.1001-9278.2024.06.004
• Materials and Properties • Previous Articles Next Articles
LIU Shuai1(), ZHAO Zihao1, YU Ying2, YANG Jiaxin1, ZHANG Yang1(
)
Received:
2024-03-06
Online:
2024-06-26
Published:
2024-06-20
CLC Number:
LIU Shuai, ZHAO Zihao, YU Ying, YANG Jiaxin, ZHANG Yang. Preparation and dielectric properties of core⁃shell structural carbon⁃fiber felt@polyaniline composite[J]. China Plastics, 2024, 38(6): 25-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.06.004
样品类型 | 接触角 | 平均接触角/° | 表面能/mN•m-1 | 色散分量/mN•m-1 | 极性分量/mN•m-1 |
---|---|---|---|---|---|
原始CFF | 水接触角 | <3 | <74.32 | <33.11 | <41.21 |
油接触角 | <3 | ||||
CFF@PANI复合材料 | 水接触角 | <3 | <74.32 | <33.11 | <41.21 |
油接触角 | <3 | ||||
PDMS封装原始CFF材料 | 水接触角 | 103.13 | 7.47 | 4.70 | 2.78 |
油接触角 | 90.67 | ||||
PDMS封装CFF@PANI复合材料 | 水接触角 | 113.45 | 13.53 | 9.86 | 3.68 |
油接触角 | 107.20 |
样品类型 | 接触角 | 平均接触角/° | 表面能/mN•m-1 | 色散分量/mN•m-1 | 极性分量/mN•m-1 |
---|---|---|---|---|---|
原始CFF | 水接触角 | <3 | <74.32 | <33.11 | <41.21 |
油接触角 | <3 | ||||
CFF@PANI复合材料 | 水接触角 | <3 | <74.32 | <33.11 | <41.21 |
油接触角 | <3 | ||||
PDMS封装原始CFF材料 | 水接触角 | 103.13 | 7.47 | 4.70 | 2.78 |
油接触角 | 90.67 | ||||
PDMS封装CFF@PANI复合材料 | 水接触角 | 113.45 | 13.53 | 9.86 | 3.68 |
油接触角 | 107.20 |
1 | Kim S, Kim M C, Yeo B C, et al. High⁃throughput design of bimetallic core⁃shell catalysts for the electrochemical nitrogen reduction reaction [J]. Journal of Materials Chemistry A, 2023, 11(45): 24 686⁃24 697. |
2 | Nair A R, Vetrikarasan B T, Shinde S K, et al. Bifunctional CuO@CoV layered double hydroxide (LDH) core⁃shell heterostructure for electrochemical energy storage and electrocatalysis [J]. Fuel, 2024, 358: 130217. |
3 | Ren X, Wu C W, Li S Y, et al. Tuning interfacial thermal conductance of GaN/AlN heterostructure nanowires by constructing core/shell structure [J]. Journal of Physics⁃Condensed Matter, 2023, 35(11): 115302. |
4 | Bagal I V, Mane P, Arunachalam M, et al. Exploiting the complete efficacy of 3D⁃nitrogen⁃doped ZnO nanowires photoanode via type⁃Ⅱ ZnS core⁃shell formation toward highly stable photoelectrochemical water splitting [J]. Materials Today Physics, 2023, 34: 101087. |
5 | Li R P, Yu S M, Zhao Z Y. Boosting photoelectrochemical performance of CuFeO2/CuO photocathode by modulating heterojunction architecture and oxygen vacancies [J]. Applied Surface Science, 2023, 640: 158392. |
6 | Majumder S, Su X, Kim K H. Effective strategy of incorporating Co3O4 as a co⁃catalyst onto an innovative BiVO4/Fe2TiO5 core⁃shell heterojunction for effective photoelectrochemical water⁃splitting application [J]. Surfaces and Interfaces, 2023, 39: 102936. |
7 | Wang L, Liu Z, Ma Y, et al. Synergistic design of a semi⁃hollow core⁃shell structure and a metal⁃organic framework⁃derived Co/Zn selenide coated with MXene for high⁃performance lithium⁃sulfur batteries [J]. Dalton Transactions, 2024, 53(2): 572⁃581. |
8 | Liu X, Li F P, Peng W B, et al. Piezotronic and piezo⁃phototronic effects⁃enhanced core⁃shell structure⁃based nanowire field⁃effect transistors [J]. Micromachines, 2023, 14(7): 1 335. |
9 | Luo J L, Zheng Z, Yan S K, et al. Photocurrent enhanced in UV⁃vis⁃NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo⁃phototronic effect [J]. ACS Photonics, 2020, 7(6): 1 461⁃1 467. |
10 | Das S, Pal S, Larsson K, et al. Hydrothermally grown SnS2/Si nanowire core⁃shell heterostructure photodetector with excellent optoelectronic performances [J]. Applied Surface Science, 2023, 624: 157094. |
11 | McArdle S, Landon⁃Lane L, Marshall A T. Using single fibre electrodes to determine the spatial variability of rate constants across carbon felt electrodes [J]. Electrochemistry Communications, 2021, 131: 107122. |
12 | Neto D B D, Matsubara E Y, Dirican M, et al. Li intercalation in nonwoven carbon nanotube/carbon fiber felt electrode: Influence of carbon fiber type [J]. Diamond and Related Materials, 2021, 115: 108353. |
13 | Hu Q L, Duan Y F, Zheng X H, et al. Lightweight, flexible, and highly conductive recycled carbon fiber felt for electromagnetic interference shielding [J]. Journal of Alloys and Compounds, 2023, 935: 168152. |
14 | Xu X J, Yao F C, Abu Ali O A, et al. Adjustable core⁃sheath architecture of polyaniline⁃decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding [J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2 002⁃2 011. |
15 | Rana A K, Scarpa F, Thakur V K. Cellulose/polyaniline hybrid nanocomposites: Design, fabrication, and emerging multidimensional applications [J]. Industrial Crops and Products, 2022, 187: 115356. |
16 | Gao H, Wang C H, Yang Z J, et al. 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre⁃constructed macroscopic conductive framework [J]. Composites Science and Technology, 2021, 213: 108896. |
17 | Zhang Y, Pan T, Yang Z. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance [J]. Chemical Engineering Journal, 2020, 389: 124433. |
18 | Pan T, Zhang Y, Wang C H, et al. Mulberry⁃like polyaniline⁃based flexible composite fabrics with effective electromagnetic shielding capability [J]. Composites Science and Technology, 2020, 188: 107991. |
19 | Yu X H, Zhang H P, Wang Y F, et al. Highly stretchable, ultra⁃soft, and fast self⁃healable conductive hydrogels based on polyaniline nanoparticles for sensitive flexible sensors [J]. Advanced Functional Materials, 2022, 32(33): 2204366. |
20 | Chen Y H, Su L X, Jiang M M, et al. Switch type PANI/ZnO core⁃shell microwire heterojunction for UV photodetection [J]. Journal of Materials Science & Technology, 2022, 105: 259⁃265. |
21 | Zheng R H, Chen Y X, Chi H, et al. 3D printing of a polydimethylsiloxane/polytetrafluoroethylene composite elastomer and its application in a triboelectric nanogenerator [J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57 441⁃57 449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||