京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (1): 112-117.DOI: 10.19491/j.issn.1001-9278.2025.01.018
• Review • Previous Articles Next Articles
WANG Shilin1(), ZHU Jiawei1, ZHANG Peng1, WEI Xingyue1, YANG Huaguang2, ZENG Xiankui1, YANG Weimin3, JIAN Ranran1(
)
Received:
2024-04-12
Online:
2025-01-26
Published:
2025-02-14
CLC Number:
WANG Shilin, ZHU Jiawei, ZHANG Peng, WEI Xingyue, YANG Huaguang, ZENG Xiankui, YANG Weimin, JIAN Ranran. Research progress in printing strength and molding rate based on FDM molding technology[J]. China Plastics, 2025, 39(1): 112-117.
1 | 卢秉恒.增材制造技术—现状与未来[J].中国机械工程,2020,31(1):19⁃23. |
LU B H. Additive manufacturing⁃current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19⁃23. | |
2 | 马晓伟,刘 佳,李 静,等.3D打印技术现状及发展趋势[J].新材料产业,2019(10):51⁃54. |
MA X W, LIU J, LI J,et al. Status and development trend of 3D printing technology[J]. Advanced Material Industry,2019(10):51⁃54. | |
3 | 周 朕.熔融沉积扫描路径规划及工艺参数优化研究[D].南京:南京航空航天大学,2017. |
4 | DING D H, PAN Z X, CUIURI D, et al. A tool⁃path generation strategy for wire and arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(1⁃4): 173⁃183. |
5 | 任东改.基于Bayazit算法的3D打印路径规划研究[J].数字印刷,2019(6):50⁃57. |
REN D G. Research on 3D printing path planning based on Bayazit algorithm[J]. Printing and Digital Media Technology Study, 2019(6): 50⁃57. | |
6 | SERRA T, ORTIZ⁃HERNANDEZ M, ENGEL E, et al. Relevance of PEG in PLA⁃based blends for tissue engineering 3D⁃printed scaffolds[J]. Materials Science & Engineering C, 2014, 38: 55⁃62. |
7 | 刘海华,高文强,赵 淘,等.基于电弧熔丝增材制造的复合路径规划方法[J].材料科学与工艺,2022,30(1):53⁃60. |
LIU H H, GAO W Q, ZHAO T,et al. A compound path planning method based on wire and Arc addictive manufacturing[J]. Materials Science and Technology, 2022, 30(1): 53⁃60. | |
8 | 任 元.熔融沉积工艺中成型质量关键影响因素的分析与研究[D].长春:长春工业大学,2018. |
9 | 李春霞.熔融成型工艺参数对成型件表面质量的影响[J].流体测量与控制,2021,2(6):55⁃58. |
Li C X. Effect of melt forming process parameters on surface quality of molded parts[J]. Fluid Measurement & Control, 2021, 2(6): 55⁃58. | |
10 | 成国峰,丁子珊.基于流体热分析的FDM工艺参数对拉伸强度的影响研究[J].机械强度,2023,45(5):1 211⁃1 220. |
CHENG G F, DING Z S. Effect of FDM process parameters on tensile strength based on fluid thermal analysis[J]. Journal of Mechanical Strength, 2023, 45(5): 1 211⁃1 220. | |
11 | 陈毅非. FDM工艺参数对3D打印质量的影响[D].郑州:郑州大学,2022. |
12 | 周石林,张秀芬.尼龙线材FDM成型质量优化研究[J].塑料工业,2023,51(2):100⁃106. |
ZHOU S L, ZHANG X F. Research on molding quality optimization of Nylon wire based on FDM[J]. China Plastics Industry, 2023, 51(2): 100⁃106. | |
13 | 陈勇,黄筱调,袁鸿,等.熔融沉积成型工艺参数优化研究[J].现代制造工程,2016(11):73⁃78+83. |
CHEN Y, HUANG X D, YUAN H,et al. FDM technical parameters optimization research[J]. Modern Manufacturing Engineering, 2016(11): 73⁃78+83. | |
14 | 秦 鹏,靳国宝,胡金兵 等.FDM工艺参数的优化以及对成型质量的影响[J].新乡学院学报,2020,37(6):55⁃59+64. |
QIN P, JIN G B, HU J B,et al. Optimization of FDM process parameters and Its influence on molding quality[J]. Journal of Xinxiang University, 2020, 37(6): 55⁃59+64. | |
15 | STAMOPOULOS G A, GLINZ J, SENCK S. Assessment of the effects of the addition of continuous fiber filaments in PA 6/short fiber 3D⁃printed components using interrupted in⁃situ x⁃ray CT tensile testing[J]. Engineering Failure Analysis, 2024, 159: 108⁃121. |
16 | RYOSUKE M, MASAHITO U, MASAKI N, et al. Three⁃dimensional printing of continuous⁃fiber composites by in⁃nozzle impregnation[J]. Scientific Reports, 2016, 6(1): 23⁃58. |
17 | 黄志超,骆 强,赖家美,等.环氧树脂/玻璃纤维/碳纤维混杂复合板低速冲击及损伤检测[J].中国塑料,2021,35(6):46⁃52. |
HUANG Z C, LUO Q, LAI J Met al. Low⁃velocity impact and damage detection of Epoxy/Glass and carbon fiber composite plates[J]. China Plastics, 2021, 35(6): 46⁃52. | |
18 | FUDA N, WEILONG C, ZHONGLUE H, et al. Additive manufacturing of thermoplastic matrix composites using fused deposition modeling: A comparison of two reinforcements[J]. Journal of Composite Materials, 2017, 51(27): 3 733⁃3 742. |
19 | KLIFT D V F, KOGA Y, TODOROKI A, et al.3D Printing of continuous carbon Fibre reinforced thermo⁃plastic (CFRTP) tensile test specimens[J]. Open Journal of Composite Materials, 2016, 6(1): 18⁃27. |
20 | HASSAN A E, GE D, YANG L, et al. Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J]. Composites Part A, 2018, 112: 155⁃160. |
21 | TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A, 2016, 88: 198⁃205. |
22 | QIAO J, LI Y, LI L. Ultrasound⁃assisted 3D printing of continuous fiber⁃reinforced thermoplastic (FRTP) composites[J]. Additive Manufacturing, 2019, 30: 100926. |
23 | WANG Q, JI C, SUN L, et al. Cellulose nanofibrils filled poly(lactic acid) biocomposite filament for FDM 3D printing[J]. Molecules, 2020, 25(10): 2 317⁃2 319. |
24 | KUMAR D S, VENKADESHWARAN K, ARAVINDAN M. Fused deposition modelling of PLA reinforced with cellulose nano⁃crystals[J]. Materials Today: Proceedings, 2020, 33(P1): 868⁃875. |
25 | QING Z, LISHA M, XIYA Z, et al. Lignocellulose nanofiber/polylactic acid (LCNF/PLA) composite with internal lignin for enhanced performance as 3D printable filament[J]. Industrial Crops Products, b2022, 178: 114⁃152. |
26 | NARAHARA H, SHIRAHAMA Y, KORESAWA H. Improvement and evaluation of the interlaminar bonding strength of FDM parts by atmospheric⁃pressure plasma[J]. Procedia CIRP, 2016, 42: 754⁃759. |
27 | ZALDIVAR J R, MCLOUTH D T, PATEL N D, et al. Strengthening of plasma treated 3D printed ABS through epoxy infiltration[J]. Progress in Additive Manufacturing, 2017, 2(4): 193⁃200. |
28 | YANG K, GRANT C J, LAMEY P, et al. Diels–Alder reversible thermoset 3D printing: isotropic thermoset polymers via fused filament fabrication[J]. Advanced Functional Materials, 2017, 27(24): 170⁃318. |
29 | DAVIDSON J R, APPUHAMILLAGE G A, THOMPSON C M, et al. Design paradigm utilizing reversible Diels⁃Alder reactions to enhance the mechanical properties of 3D printed materials.[J]. ACS applied materials interfaces, 2016, 8(26): 16 961⁃16 966. |
30 | 杨柏森.散热条件对FDM丝材粘结质量的影响研究[D].大连:大连理工大学,2014. |
31 | 肖建华,许煌翔,刘晓波.一种FDM成形中气体辅助喷头的设计及其对打印件力学性能的影响[J].塑性工程学报,2023,30(1):208⁃214. |
XIAO J H, XU H X, LIU X B. Design of a gas⁃assisted nozzle in FDM molding and its influence on mechanical properties of printing parts[J]. Journal of Plasticity Engineering, 2023, 30(1): 208⁃214. | |
32 | 徐子又,胡镔,邢泽华,等.层间预熔温度对熔融沉积成型打印件力学性能的影响[J].塑料科技,2019,47(5):37⁃43. |
XU Z Y, HU B, XING Z Het al. Effect of interlayer premelting temperature on mechanical properties of fused deposition molded printed parts[J]. Plastic Science and Technology, 2019, 47(5): 37⁃43. | |
33 | 余兆函,周子康,王云明.聚合物管载胶熔融沉积3D打印增强层间结合强度[J].精密成形工程,2021,13(2):87⁃90. |
YU Z H, ZHOU Z K, WANG Y M. Fuse deposition 3D printing using glue within polymer tube to enhance interlayer bonding strength[J]. Journal of Netshape Forming Engineering, 2021, 13(2): 87⁃90. | |
34 | 严 铜.多喷头 3D打印机并行打印的方法[P].江苏省:CN110815812A,2020⁃02⁃21. |
35 | KEUN S P, BIN S O, SI K K. Multi⁃nozzle printing method for near⁃field electrospinning printing of invisible electrodes on PET film[J]. Transactions of the Korean Society of Mechanical Engineers⁃B, 2020, 44(3): 207⁃218. |
36 | TSENG J W, LIU C Y, YEN Y K, et al. Screw extrusion⁃based additive manufacturing of PEEK[J]. Materials & Design, 2018, 140: 209⁃221. |
37 | SON J, YUN S, PARK K, et al. Isotropic 3D printing using material extrusion of thin shell and post⁃casting of reinforcement core[J]. SSRN Electronic Journal, 2022, 58: 102⁃131. |
38 | 鉴冉冉,贾维辉,郭 鹏,等.一种注射 3 D打印装置:中国,CN113211785A[P].2021⁃08⁃06. |
39 | 鉴冉冉,林广义,史忠鹤,等.一种桌面级 3 D打印和复印装置及方法:中国,CN112571791A[P].2021⁃03⁃30. |
40 | 鉴冉冉,林广义,史忠鹤,等.一种具有增强骨架的异步 3 D 打印方法及装置:中国,CN111823581A [P].2020⁃10⁃27. |
41 | GO J, SCHIFFRES N S, STEVENS G A, et al. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design[J]. Additive Manufacturing, 2017, 16: 1⁃11. |
42 | 汪甜田.FDM送丝机构的研究与设计[D].武汉:华中科技大学,2007. |
43 | 王远伟.FDM快速成型进给系统的研究与设计[D].武汉:华中科技大学,2015. |
44 | 迟耀东,王进峰.熔融沉积快速成型送丝机构的研究与设计[J].现代制造工程,2017(6):69⁃72+98. |
CHI Y D, WANG J F. The research and design on the wire feeder of fused deposition modeling[J]. Modern Manufacturing Engineering,2017(6): 69⁃72+98. | |
45 | 马志刚,王会良.熔融沉积3D打印机的送丝机构优化设计[J].现代信息科技,2019,3(24):160⁃162+164. |
MA Z G, WANG H L. Optimization design of wire feeder for 3D printing equipment of fused deposition modeling technology[J]. Modern Information Technology, 2019, 3(24): 160⁃162+164. | |
46 | 王宗兴.激光辅助两段式螺杆快速熔融沉积喷头的设计与研究[D].青岛:青岛大学,2021. |
47 | 袁 平,谢焯俊,张 泽,等.基于ANSYS Icepak的FDM 3D高温打印机喷头散热优化研究[J].机械,2021,48(11):10⁃16. |
YUAN P, XIE Z J, ZHANG Z,et al. Heat dissipation optimization of FDM 3D high temperature printer nozzle based on ANSYS Icepak[J]. Machinery,2021,48(11): 10⁃16. | |
48 | 马 雯,杨化林.基于笛卡尔坐标系FDM型3D打印机的对比分析[J].科学技术创新,2018(11):62⁃63. |
MA W, YANG H L. Comparative analysis of FDM 3D printer based on Cartesian coordinate system[J].Scientific and Technological Innovation,2018(11):62⁃63. | |
49 | 蔡团团,易继军,吴康雄.基于Delta并联机械结构的3D打印机研究[J].制造技术与机床,2017(6):57⁃61. |
CAI T T, YI J J, WU K X. 3D printers research based on detal structure[J]. Manufacturing Technology & Machine Tool, 2017(6): 57⁃61. | |
50 | YADAV D, CHHABRA D, GARG K R, et al. Optimization of FDM 3D printing process parameters for multi⁃material using artificial neural network[J]. Materials Today: Proceedings, 2020, 21(Pt 3): 1 583⁃1 591. |
51 | 张 兴,韩 俊,袁玉冰.应用激光测距技术的3D打印喷头轨迹跟踪方法[J].激光杂志,2023,44(6):194⁃198. |
ZHANG X, HAN J, YUAN Y B. 3D printing nozzle trajectory tracking method using leaser ranging technology[J]. Laser Journal, 2023, 44(6): 194⁃198. | |
52 | 胡玉鹏,甘新基,师珍珍,等.桌面级FDM高精度3D打印机的设计[J].吉林化工学院学报,2019,36(5):23⁃25+59. |
HU Y P, GAN X J, SHI Z Zet al. Design of high precision 3D printer for desktop FDM[J]. Journal of Jilin Institute of Chemical Technology, 2019, 36(5): 23⁃25+59. | |
53 | 毕忠梁,单家正,赵夫超.基于Smoothieware的双臂SCARA型3D打印机设计[J].景德镇学院学报,2022,37(3):9⁃12. |
BI Z L, SHAN J Z, ZHAO F C. Design of a dual⁃arm SCARA 3D printer based on smooothieware[J]. Journal of Jingdezhen University, 2022, 37(3): 9⁃12. | |
54 | 王 祎,葛静怡,薛昕惟,等.改进Q学习的薄壁结构3D打印路径规划[J].计算机工程与应用,2022,58(12):299⁃303. |
WANG Y, GE J Y, XUE X Wet al. Path planning for complex thin⁃walled structures in 3D printing: improved Q⁃Learning method[J]. Computer Engineering and Applications, 2022, 58(12): 299⁃303. | |
55 | 姜晓晨光.一种基于人工场势的FDM薄壁结构打印路径规划方法[J].丝网印刷,2023(15):101⁃103. |
JIANG X C G. A printing path planning method for thin⁃walled structures with FDM based on artificial field potential[J]. Screen Printing, 2023 (15): 101⁃103. | |
56 | LEQUN C, XILING Y, PENG X, et al. Rapid surface defect identification for additive manufacturing with in⁃situ point cloud processing and machine learning[J]. Virtual and Physical Prototyping, 2021, 16(1): 50⁃67. |
57 | INGO S, RICHARD T, ULRICH G. Enhancement of high⁃resolution 3D inkjet⁃Printing of optical freeform surfaces using digital twins[J]. Micromachines, 2020,12(1): 35⁃35. |
58 | 杨德成,李凤岐,王 祎,等.智能3D打印路径规划算法[J].计算机科学,2020,47(8):267⁃271. |
YANG D C, LI F Q, WANG Y, et al. Intelligent 3D printing path planning algorithm[J]. Computer Science,2020, 47(8): 267⁃271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||