京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (11): 104-110.DOI: 10.19491/j.issn.1001-9278.2021.11.016
• Additive • Previous Articles Next Articles
ZHANG Dingran1(), LU Lingang2(
)
Received:
2021-05-21
Online:
2021-11-26
Published:
2021-11-23
CLC Number:
ZHANG Dingran, LU Lingang. Pyrolysis and Thermokinetic Characteristics of Calixarene[J]. China Plastics, 2021, 35(11): 104-110.
β/ ℃·min?1 | 材料 | T5%/℃ | Tmax/℃ | Rmax/ %·℃-1 |
---|---|---|---|---|
10 | 杯[ | 385.91 | 399.38 | 1.833 0 |
10 | 对叔丁基杯[ | 230.03 | 230.03 | 0.495 3 |
20 | 杯[ | 394.07 | 407.76 | 1.888 3 |
20 | 对叔丁基杯[ | 235.61 | 238.52 | 0.455 7 |
30 | 杯[ | 394.55 | 413.32 | 1.563 7 |
30 | 对叔丁基杯[ | 238.21 | 239.77 | 0.440 7 |
40 | 杯[ | 392.59 | 412.78 | 1.689 9 |
40 | 对叔丁基杯[ | 236.10 | 242.75 | 0.407 7 |
β/ ℃·min?1 | 材料 | T5%/℃ | Tmax/℃ | Rmax/ %·℃-1 |
---|---|---|---|---|
10 | 杯[ | 385.91 | 399.38 | 1.833 0 |
10 | 对叔丁基杯[ | 230.03 | 230.03 | 0.495 3 |
20 | 杯[ | 394.07 | 407.76 | 1.888 3 |
20 | 对叔丁基杯[ | 235.61 | 238.52 | 0.455 7 |
30 | 杯[ | 394.55 | 413.32 | 1.563 7 |
30 | 对叔丁基杯[ | 238.21 | 239.77 | 0.440 7 |
40 | 杯[ | 392.59 | 412.78 | 1.689 9 |
40 | 对叔丁基杯[ | 236.10 | 242.75 | 0.407 7 |
β/ ℃·min-1 | Tp/K | (1/Tp)/ ×10-3K-1 | Kissinger法 ln(β/Tp2)/K-1·min-1 | Ek/ kJ·mol-1 |
---|---|---|---|---|
10 | 672.38 | 1.487 | -10.719 | 387.87 |
20 | 680.76 | 1.469 | -10.050 | |
30 | 682.75 | 1.465 | -9.651 | |
40 | 685.78 | 1.458 | -9.372 |
β/ ℃·min-1 | Tp/K | (1/Tp)/ ×10-3K-1 | Kissinger法 ln(β/Tp2)/K-1·min-1 | Ek/ kJ·mol-1 |
---|---|---|---|---|
10 | 672.38 | 1.487 | -10.719 | 387.87 |
20 | 680.76 | 1.469 | -10.050 | |
30 | 682.75 | 1.465 | -9.651 | |
40 | 685.78 | 1.458 | -9.372 |
β/ ℃·min-1 | Tp/K | (1/Tp)/ ×10-3K-1 | Kissinger法 ln(β/Tp2)/K-1·min-1 | Ek/ kJ·mol-1 |
---|---|---|---|---|
10 | 503.03 | 1.988 | -10.139 | 223.56 |
20 | 511.52 | 1.955 | -9.479 | |
30 | 512.77 | 1.950 | -9.078 | |
40 | 515.75 | 1.939 | -8.802 |
β/ ℃·min-1 | Tp/K | (1/Tp)/ ×10-3K-1 | Kissinger法 ln(β/Tp2)/K-1·min-1 | Ek/ kJ·mol-1 |
---|---|---|---|---|
10 | 503.03 | 1.988 | -10.139 | 223.56 |
20 | 511.52 | 1.955 | -9.479 | |
30 | 512.77 | 1.950 | -9.078 | |
40 | 515.75 | 1.939 | -8.802 |
α | SD | r | E/ kJ·mol-1 |
---|---|---|---|
0.1 | 0.002 8 | 0.985 8 | 527.60 |
0.2 | 0.003 6 | 0.982 1 | 517.76 |
0.3 | 0.003 0 | 0.984 8 | 461.09 |
0.4 | 0.002 7 | 0.986 5 | 401.47 |
0.5 | 0.001 5 | 0.992 3 | 328.92 |
0.6 | 0.003 9 | 0.980 7 | 270.69 |
0.7 | 0.003 7 | 0.981 3 | 185.17 |
0.8 | 0.001 6 | 0.991 9 | 317.58 |
α | SD | r | E/ kJ·mol-1 |
---|---|---|---|
0.1 | 0.002 8 | 0.985 8 | 527.60 |
0.2 | 0.003 6 | 0.982 1 | 517.76 |
0.3 | 0.003 0 | 0.984 8 | 461.09 |
0.4 | 0.002 7 | 0.986 5 | 401.47 |
0.5 | 0.001 5 | 0.992 3 | 328.92 |
0.6 | 0.003 9 | 0.980 7 | 270.69 |
0.7 | 0.003 7 | 0.981 3 | 185.17 |
0.8 | 0.001 6 | 0.991 9 | 317.58 |
α | SD | r | E/ kJ·mol-1 |
---|---|---|---|
0.1 | 0.001 8 | 0.999 9 | 238.57 |
0.2 | 0.004 2 | 0.997 9 | 244.97 |
0.3 | 0.005 1 | 0.997 4 | 244.89 |
0.4 | 0.002 7 | 0.998 7 | 235.75 |
0.5 | 0.004 5 | 0.997 8 | 245.64 |
0.6 | 0.001 3 | 0.993 7 | 241.10 |
0.7 | 0.004 4 | 0.997 8 | 240.72 |
0.8 | 0.004 8 | 0.997 6 | 236.14 |
α | SD | r | E/ kJ·mol-1 |
---|---|---|---|
0.1 | 0.001 8 | 0.999 9 | 238.57 |
0.2 | 0.004 2 | 0.997 9 | 244.97 |
0.3 | 0.005 1 | 0.997 4 | 244.89 |
0.4 | 0.002 7 | 0.998 7 | 235.75 |
0.5 | 0.004 5 | 0.997 8 | 245.64 |
0.6 | 0.001 3 | 0.993 7 | 241.10 |
0.7 | 0.004 4 | 0.997 8 | 240.72 |
0.8 | 0.004 8 | 0.997 6 | 236.14 |
序号 | 函数名称 | 积分形式机理函数g(α) | 机理 |
---|---|---|---|
1 | Mampel power 法则 | G(α)=α1/4 | n=1/4 |
2 | Mampel power 法则 | G(α)=α1/3 | n=1/3 |
3 | Mampel power 法则 | G(α)=α1/2 | n=1/2 |
4 | Mampel power 法则 | G(α)=α | 相边界反应(一维),R1,n=1 |
5 | 抛物线法则 | G(α)=α2 | 一维扩散, 1D, 减速形a?t曲线 |
6 | Mampel power 法则 | G(α)=α3/2 | n=3/2 |
7 | Valensi 方程 | G(α)=α+(1-α)ln(1-α) | 二维扩散, 2D, 减速形a?t曲线 |
8 | Ginstling?Brounshtein方程 | G(α)=1-2α/3-(1-α)2/3 | 三维扩散, 3D, 圆柱形对称, 减速形a?t曲线 |
9 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/2(n=1/2) | 随机成核和随后生长,S形a?t曲线, n=1/2 |
10 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/4(n=1/4) | 随机成核和随后生长, S形a?t曲线, n= 1/4 |
11 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/3(n=1/3) | 随机成核和随后生长, S形a?t曲线, n= 1/3 |
12 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2/5(n=2/5) | 随机成核和随后生长,n=2/5 |
13 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2/3(n=2/3) | 随机成核和随后生长,n=2/3 |
14 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3/4(n=3/4) | 随机成核和随后生长,n=3/4 |
15 | Mampel 单行法则, 一级 | G(α)=-ln(1-α)(n=1) | 随机成核和随后生长,S形a?t曲线,n=1 |
16 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3/2(n=3/2) | 随机成核和随后生长,n=3/2 |
17 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2(n=2) | 随机成核和随后生长,n=2 |
18 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3(n=3) | 随机成核和随后生长,n=3 |
19 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]4(n=4) | 随机成核和随后生长,n=4 |
20 | 反应级数 | G(α)=1-(1-α)1/4 | n=1/4 |
21 | 收缩球状 (体积) | G(α)=1-(1-α)1/3 | 相边界反应, 球形对称, 减速形a?t曲线,n=1/3 |
22 | 收缩圆柱体 (面积) | G(α)=1-(1-α)1/2 | 相边界反应, 圆柱形对称, 减速形a?t曲线,n=1/2 |
23 | 反应级数 | G(α)=1-(1-α)2(n=2) | n=2 |
24 | 反应级数 | G(α)=1-(1-α)3(n=3) | n=3 |
25 | 反应级数 | G(α)=1-(1-α)4(n=4) | n=4 |
26 | 二级 | G(α)=(1-α)-1 | 化学反应, 减速形a?t曲线 |
27 | 反应级数 | G(α)=(1-α)-1-1 | 化学反应 |
28 | 2/3 级 | G(α)=(1-α)-1/2 | 化学反应 |
29 | 三级 | G(α)=(1-α)-2 | 化学反应, 减速形a?t曲线 |
30 | Jander 方程 | G(α)=[1-(1-α)1/2]1/2 | 二维扩散, 2D,n=1/2 |
31 | Jander 方程 | G(α)=[1-(1-α)1/2]2 | 二维扩散, 2D,n=2 |
32 | Jander 方程 | G(α)=[1-(1-α)1/3]1/2 | 三维扩散, 3D,n=1/2 |
33 | Jander 方程 | G(α)=[1-(1-α)1/3]2 | 三维扩散, 3D, 球形对称, 减速形a?t曲线,n=2 |
34 | Anti?Jander方程 | G(α)=[(1+α)1/3-1]2 | 三维扩散, 3D,n=2 |
序号 | 函数名称 | 积分形式机理函数g(α) | 机理 |
---|---|---|---|
1 | Mampel power 法则 | G(α)=α1/4 | n=1/4 |
2 | Mampel power 法则 | G(α)=α1/3 | n=1/3 |
3 | Mampel power 法则 | G(α)=α1/2 | n=1/2 |
4 | Mampel power 法则 | G(α)=α | 相边界反应(一维),R1,n=1 |
5 | 抛物线法则 | G(α)=α2 | 一维扩散, 1D, 减速形a?t曲线 |
6 | Mampel power 法则 | G(α)=α3/2 | n=3/2 |
7 | Valensi 方程 | G(α)=α+(1-α)ln(1-α) | 二维扩散, 2D, 减速形a?t曲线 |
8 | Ginstling?Brounshtein方程 | G(α)=1-2α/3-(1-α)2/3 | 三维扩散, 3D, 圆柱形对称, 减速形a?t曲线 |
9 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/2(n=1/2) | 随机成核和随后生长,S形a?t曲线, n=1/2 |
10 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/4(n=1/4) | 随机成核和随后生长, S形a?t曲线, n= 1/4 |
11 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]1/3(n=1/3) | 随机成核和随后生长, S形a?t曲线, n= 1/3 |
12 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2/5(n=2/5) | 随机成核和随后生长,n=2/5 |
13 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2/3(n=2/3) | 随机成核和随后生长,n=2/3 |
14 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3/4(n=3/4) | 随机成核和随后生长,n=3/4 |
15 | Mampel 单行法则, 一级 | G(α)=-ln(1-α)(n=1) | 随机成核和随后生长,S形a?t曲线,n=1 |
16 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3/2(n=3/2) | 随机成核和随后生长,n=3/2 |
17 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]2(n=2) | 随机成核和随后生长,n=2 |
18 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]3(n=3) | 随机成核和随后生长,n=3 |
19 | Avarmi?Erofeev 方程 | G(α)=[-ln(1-α)]4(n=4) | 随机成核和随后生长,n=4 |
20 | 反应级数 | G(α)=1-(1-α)1/4 | n=1/4 |
21 | 收缩球状 (体积) | G(α)=1-(1-α)1/3 | 相边界反应, 球形对称, 减速形a?t曲线,n=1/3 |
22 | 收缩圆柱体 (面积) | G(α)=1-(1-α)1/2 | 相边界反应, 圆柱形对称, 减速形a?t曲线,n=1/2 |
23 | 反应级数 | G(α)=1-(1-α)2(n=2) | n=2 |
24 | 反应级数 | G(α)=1-(1-α)3(n=3) | n=3 |
25 | 反应级数 | G(α)=1-(1-α)4(n=4) | n=4 |
26 | 二级 | G(α)=(1-α)-1 | 化学反应, 减速形a?t曲线 |
27 | 反应级数 | G(α)=(1-α)-1-1 | 化学反应 |
28 | 2/3 级 | G(α)=(1-α)-1/2 | 化学反应 |
29 | 三级 | G(α)=(1-α)-2 | 化学反应, 减速形a?t曲线 |
30 | Jander 方程 | G(α)=[1-(1-α)1/2]1/2 | 二维扩散, 2D,n=1/2 |
31 | Jander 方程 | G(α)=[1-(1-α)1/2]2 | 二维扩散, 2D,n=2 |
32 | Jander 方程 | G(α)=[1-(1-α)1/3]1/2 | 三维扩散, 3D,n=1/2 |
33 | Jander 方程 | G(α)=[1-(1-α)1/3]2 | 三维扩散, 3D, 球形对称, 减速形a?t曲线,n=2 |
34 | Anti?Jander方程 | G(α)=[(1+α)1/3-1]2 | 三维扩散, 3D,n=2 |
g(α)机理函数序号 | β/k·min-1 | EC/kJ·mol-1 | r | SD | lg(Ac/s-1) | |(E0-Ec)/E0 | |(lgAC-lgAk)/lgAk| |
---|---|---|---|---|---|---|---|
9 | 10 | 447.54 | 0.981 4 | 0.030 7 | 34.662 5 | 0.189 4 | 0.150 4 |
11 | 10 | 294.64 | 0.981 0 | 0.013 7 | 22.663 3 | 0.217 0 | 0.247 8 |
12 | 10 | 355.80 | 0.981 2 | 0.019 7 | 27.472 3 | 0.054 4 | 0.088 2 |
9 | 20 | 459.22 | 0.974 8 | 0.032 0 | 35.652 7 | 0.220 4 | 0.183 3 |
11 | 20 | 302.41 | 0.974 2 | 0.014 2 | 23.425 8 | 0.196 3 | 0.222 5 |
12 | 20 | 365.13 | 0.974 5 | 0.020 5 | 28.325 8 | 0.029 6 | 0.059 9 |
9 | 30 | 344.09 | 0.970 6 | 0.036 4 | 26.739 2 | 0.085 6 | 0.112 5 |
11 | 30 | 225.64 | 0.979 6 | 0.016 2 | 17.497 7 | 0.400 3 | 0.419 3 |
12 | 30 | 273.02 | 0.970 2 | 0.023 3 | 21.203 8 | 0.274 4 | 0.296 3 |
9 | 40 | 317.11 | 0.977 9 | 0.024 0 | 24.574 2 | 0.157 2 | 0.184 4 |
11 | 40 | 207.63 | 0.977 1 | 0.010 7 | 16.081 0 | 0.448 2 | 0.466 3 |
12 | 40 | 251.42 | 0.977 5 | 0.015 4 | 19.487 9 | 0.331 8 | 0.353 2 |
g(α)机理函数序号 | β/k·min-1 | EC/kJ·mol-1 | r | SD | lg(Ac/s-1) | |(E0-Ec)/E0 | |(lgAC-lgAk)/lgAk| |
---|---|---|---|---|---|---|---|
9 | 10 | 447.54 | 0.981 4 | 0.030 7 | 34.662 5 | 0.189 4 | 0.150 4 |
11 | 10 | 294.64 | 0.981 0 | 0.013 7 | 22.663 3 | 0.217 0 | 0.247 8 |
12 | 10 | 355.80 | 0.981 2 | 0.019 7 | 27.472 3 | 0.054 4 | 0.088 2 |
9 | 20 | 459.22 | 0.974 8 | 0.032 0 | 35.652 7 | 0.220 4 | 0.183 3 |
11 | 20 | 302.41 | 0.974 2 | 0.014 2 | 23.425 8 | 0.196 3 | 0.222 5 |
12 | 20 | 365.13 | 0.974 5 | 0.020 5 | 28.325 8 | 0.029 6 | 0.059 9 |
9 | 30 | 344.09 | 0.970 6 | 0.036 4 | 26.739 2 | 0.085 6 | 0.112 5 |
11 | 30 | 225.64 | 0.979 6 | 0.016 2 | 17.497 7 | 0.400 3 | 0.419 3 |
12 | 30 | 273.02 | 0.970 2 | 0.023 3 | 21.203 8 | 0.274 4 | 0.296 3 |
9 | 40 | 317.11 | 0.977 9 | 0.024 0 | 24.574 2 | 0.157 2 | 0.184 4 |
11 | 40 | 207.63 | 0.977 1 | 0.010 7 | 16.081 0 | 0.448 2 | 0.466 3 |
12 | 40 | 251.42 | 0.977 5 | 0.015 4 | 19.487 9 | 0.331 8 | 0.353 2 |
g(α)机理函数序号 | β/k·min-1 | EC/ kJ·mol-1 | r | SD | lg(Ac/s-1) | |(E0-Ec)/E0| | |(lgAC-lgAk)/lgAk| |
---|---|---|---|---|---|---|---|
9 | 10 | 283.16 | 0.975 0 | 0.041 0 | 29.450 0 | 0.175 1 | 0.268 3 |
11 | 10 | 185.99 | 0.974 0 | 0.018 2 | 19.205 2 | 0.228 1 | 0.172 9 |
12 | 10 | 224.86 | 0.974 5 | 0.026 2 | 23.312 5 | 0.066 9 | 0.004 0 |
13 | 10 | 380.32 | 0.975 5 | 0.072 8 | 39.640 4 | 0.578 3 | 0.707 2 |
14 | 10 | 428.91 | 0.975 7 | 0.092 1 | 44.723 7 | 0.779 9 | 0.926 1 |
9 | 20 | 301.72 | 0.973 5 | 0.041 8 | 31.320 7 | 0.252 1 | 0.348 9 |
11 | 20 | 198.33 | 0.970 2 | 0.018 6 | 20.558 3 | 0.176 9 | 0.114 6 |
12 | 20 | 239.69 | 0.970 8 | 0.026 8 | 24.872 6 | 0.005 3 | 0.071 2 |
13 | 20 | 405.12 | 0.970 1 | 0.074 3 | 42.028 8 | 0.681 2 | 0.810 0 |
14 | 20 | 456.81 | 0.970 3 | 0.094 0 | 47.371 0 | 0.895 7 | 1.040 1 |
9 | 30 | 268.88 | 0.976 5 | 0.025 1 | 27.933 1 | 0.115 8 | 0.203 0 |
11 | 30 | 176.42 | 0.975 5 | 0.011 1 | 18.339 5 | 0.267 9 | 0.210 2 |
12 | 30 | 213.41 | 0.976 0 | 0.016 0 | 22.186 4 | 0.114 4 | 0.044 5 |
13 | 30 | 361.34 | 0.970 7 | 0.044 6 | 37.472 0 | 0.499 5 | 0.613 8 |
14 | 30 | 407.58 | 0.977 2 | 0.056 4 | 42.229 6 | 0.691 4 | 0.818 7 |
9 | 40 | 187.65 | 0.972 1 | 0.022 6 | 19.553 1 | 0.221 3 | 0.157 9 |
11 | 40 | 122.26 | 0.970 8 | 0.010 0 | 12.738 4 | 0.492 6 | 0.451 4 |
12 | 40 | 148.42 | 0.971 5 | 0.014 4 | 15.474 1 | 0.384 1 | 0.333 6 |
13 | 40 | 253.04 | 0.972 7 | 0.040 1 | 26.311 6 | 0.050 1 | 0.133 1 |
14 | 40 | 285.74 | 0.972 9 | 0.050 7 | 29.678 8 | 0.185 8 | 0.278 2 |
g(α)机理函数序号 | β/k·min-1 | EC/ kJ·mol-1 | r | SD | lg(Ac/s-1) | |(E0-Ec)/E0| | |(lgAC-lgAk)/lgAk| |
---|---|---|---|---|---|---|---|
9 | 10 | 283.16 | 0.975 0 | 0.041 0 | 29.450 0 | 0.175 1 | 0.268 3 |
11 | 10 | 185.99 | 0.974 0 | 0.018 2 | 19.205 2 | 0.228 1 | 0.172 9 |
12 | 10 | 224.86 | 0.974 5 | 0.026 2 | 23.312 5 | 0.066 9 | 0.004 0 |
13 | 10 | 380.32 | 0.975 5 | 0.072 8 | 39.640 4 | 0.578 3 | 0.707 2 |
14 | 10 | 428.91 | 0.975 7 | 0.092 1 | 44.723 7 | 0.779 9 | 0.926 1 |
9 | 20 | 301.72 | 0.973 5 | 0.041 8 | 31.320 7 | 0.252 1 | 0.348 9 |
11 | 20 | 198.33 | 0.970 2 | 0.018 6 | 20.558 3 | 0.176 9 | 0.114 6 |
12 | 20 | 239.69 | 0.970 8 | 0.026 8 | 24.872 6 | 0.005 3 | 0.071 2 |
13 | 20 | 405.12 | 0.970 1 | 0.074 3 | 42.028 8 | 0.681 2 | 0.810 0 |
14 | 20 | 456.81 | 0.970 3 | 0.094 0 | 47.371 0 | 0.895 7 | 1.040 1 |
9 | 30 | 268.88 | 0.976 5 | 0.025 1 | 27.933 1 | 0.115 8 | 0.203 0 |
11 | 30 | 176.42 | 0.975 5 | 0.011 1 | 18.339 5 | 0.267 9 | 0.210 2 |
12 | 30 | 213.41 | 0.976 0 | 0.016 0 | 22.186 4 | 0.114 4 | 0.044 5 |
13 | 30 | 361.34 | 0.970 7 | 0.044 6 | 37.472 0 | 0.499 5 | 0.613 8 |
14 | 30 | 407.58 | 0.977 2 | 0.056 4 | 42.229 6 | 0.691 4 | 0.818 7 |
9 | 40 | 187.65 | 0.972 1 | 0.022 6 | 19.553 1 | 0.221 3 | 0.157 9 |
11 | 40 | 122.26 | 0.970 8 | 0.010 0 | 12.738 4 | 0.492 6 | 0.451 4 |
12 | 40 | 148.42 | 0.971 5 | 0.014 4 | 15.474 1 | 0.384 1 | 0.333 6 |
13 | 40 | 253.04 | 0.972 7 | 0.040 1 | 26.311 6 | 0.050 1 | 0.133 1 |
14 | 40 | 285.74 | 0.972 9 | 0.050 7 | 29.678 8 | 0.185 8 | 0.278 2 |
1 | GUTSCHE C D. Calixarenes:An Introduction[M]. RSC Pub,2008. |
2 | ZADMARD R, HOKMABADI F, JALALI M R, et al. Recent Progress to Construct Calixarene⁃based Polymers Using Covalent Bonds: Synthesis and Applications[J]. RSC Advances, 2020, 10(54): 32 690⁃32 722. |
3 | 罗 钧,郑企雨,陈传峰,黄志镗.固有手性杯芳烃的研究[J].化学进展,2006(Z2):897⁃906. |
LUO J, ZHENG Q Y, CHEN C F. Study on Intrinsic Chiral Calixarene[J]. Progress in Chemistry,2006(Z2):897⁃906. | |
4 | QIAN X D, ZHENG K S, LU L G, et al. A Novel Flame Retardant Containing Calixarene and DOPO Structures: Preparation and Its Application on the Fire Safety of Polystyrene[J]. Polymers for Advanced Technologies, 2018, (29):2 715⁃2 723. |
5 | NING Y, CHEN Y C, WANG M C, et al. Calixarene⁃based Cyanate Ester Resin for High⁃temperature Material[J]. High Performance Polymers, 2019, 31(3): 359⁃366. |
6 | MARYAM S M, NIKJE M M A, RASOULI⁃SANIABADI M, et al. Synthesis and Characterization of Functiona⁃lized Calix[4]arene Derivatives and Preparation of Rigid Polyurethane Foams by the Incorporation of Calixarene[J]. Macromolecular Symposia, 2017, 373(1):1600101. |
7 | GALINDO⁃GARCIA U , TORRES L A. Crystal Structure at the Origin of the Thermal Stability and Large Enthalpy of Fusion and Sublimation Values of Calixarenes[J]. Crystal Growth & Design, 2020, 20(2):1 302⁃1 310. |
8 | LAZZAROTTO M, NACHTIGALL F F , SCHNITZLER E , et al. Thermo Gravimetric Analysis of Supramolecular Complexes of p⁃tert⁃butylcalix[6]arene and Ammonium Cations: Crystal Structure of Diethylammonium Complex[J]. Thermochimica Acta, 2005, 429(1):111⁃117. |
9 | NISHIKUBO T, KAMEYAMA A, KUDO H. Novel High Performance Materials. Calixarene Derivatives Containing Protective Groups and Polymerizable Groups for Photolithography, and Calixarene Derivatives Containing Active Ester Groups for Thermal Curing of Epoxy Resins[J]. Polymer journal, 2003, 35(3): 213⁃229. |
10 | MOHAMMADI A, BARIKANI M, DOCTORSAFAEI A H, et al. Aqueous Dispersion of Polyurethane Nanocomposites Based on Calix [4] Arenes Modified Graphene Oxide Nanosheets: Preparation, Characterization, and Anti⁃corrosion Properties[J]. Chemical Engineering Journal, 2018, 349: 466⁃480. |
11 | 胡荣祖,高胜利,赵凤起,等.热分析动力学[M].北京:科学出版社, 2001:99⁃101. |
12 | 刘振海, 张洪林. 分析化学手册. 第8分册, 热分析与量热学[M]. 北京:化学工业出版社, 2012. |
13 | KISSINGER H E. Reaction Kinetics in Differential Thermal Analysis[J]. Analytical Chemistry, 1957, 29(11):1 702⁃1 706. |
14 | OZAWA T. A New Method of Analyzing Thermogravimetric Data[J]. Bull chem soc jpn, 1965, 38(11):1 881⁃1 886. |
15 | COATS A W, REDFERN J P. Kinetic Parameters from Thermogravimetric Data[J]. Nature, 1964, 201:68⁃69. |
[1] | ZHANG Dingran, LU Lingang. Pyrolysis mechanism and kinetics of calixarene based on TG analysis [J]. China Plastics, 2022, 36(1): 92-99. |
[2] | ZHANG Dingran, LU Lingang. Study on Thermal Decomposition Kinetics of Calixarene [J]. China Plastics, 2021, 35(9): 27-33. |
[3] | HUANG Guojia, LI Lushui, XU Qingyong, XIN Mingliang. Thermal Decomposition Kinetics and Mechanisms of PE100 Compound for Gas Pipes [J]. China Plastics, 2020, 34(10): 51-55. |
[4] | . Non-Isothermal Decomposition Kinetics of Polyamide 12 [J]. China Plastics, 2016, 30(05): 13-18 . |
[5] | WU Jiangtao QI Shuhua LI Chunhua LI Meiling. Study on Naphthol Modified Phenolic Resins [J]. China Plastics, 2011, 25(04): 50-54 . |
[6] | . Determination of Contents of Starch in Starch-based Plastics by Thermogravimetry [J]. China Plastics, 2010, 24(05): 89-93 . |
[7] | . Effects of Metal Oxides on the Release Characteristic of HCl from the Combustion of Poly (vinyl chloride) [J]. China Plastics, 2009, 23(08): 39-42 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||