京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (11): 57-63.DOI: 10.19491/j.issn.1001-9278.2024.11.010
• Materials and Properties • Previous Articles Next Articles
LI Youshuang, JIN Qiushuo, TANG Jingyue, JIA Meng, XU Bo()
Received:
2024-08-19
Online:
2024-11-26
Published:
2024-11-21
CLC Number:
LI Youshuang, JIN Qiushuo, TANG Jingyue, JIA Meng, XU Bo. Study on recyclable and reusable flame⁃retardant bismaleimide resin based on covalent adaptive network[J]. China Plastics, 2024, 38(11): 57-63.
样品 | Td,5 %/℃ | Td,50 %/℃ | Tpeak/℃ | 残炭率/% | ||
---|---|---|---|---|---|---|
500 ℃ | 600 ℃ | 700 ℃ | ||||
DOPO⁃DBA | 286 | 428 | 439 | 8.12 | 6.17 | 6.15 |
DOPO⁃DBA⁃F | 102 | 410 | 452 | 9.92 | 8.35 | 8.97 |
BMI/DOPO⁃DBA⁃F | 248 | 485 | 435 | 47.33 | 42.51 | 41.40 |
样品 | Td,5 %/℃ | Td,50 %/℃ | Tpeak/℃ | 残炭率/% | ||
---|---|---|---|---|---|---|
500 ℃ | 600 ℃ | 700 ℃ | ||||
DOPO⁃DBA | 286 | 428 | 439 | 8.12 | 6.17 | 6.15 |
DOPO⁃DBA⁃F | 102 | 410 | 452 | 9.92 | 8.35 | 8.97 |
BMI/DOPO⁃DBA⁃F | 248 | 485 | 435 | 47.33 | 42.51 | 41.40 |
样品 | TTI/s | PHRR/kW·m-2 | THR/MJ·m-2 | av⁃EHC/MJ·kg-1 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | TSR/m2·m-2 | 残炭率/% |
---|---|---|---|---|---|---|---|---|
DBA/BDM | 58 | 358 | 86 | 24.9 | 0.13 | 2.35 | 2 757 | 23.17 |
BMI/DOPO⁃DBA⁃F | 13 | 364 | 37 | 18.2 | 0.26 | 1.55 | 2 582 | 37.60 |
样品 | TTI/s | PHRR/kW·m-2 | THR/MJ·m-2 | av⁃EHC/MJ·kg-1 | av⁃COY/kg·kg-1 | av⁃CO2Y/kg·kg-1 | TSR/m2·m-2 | 残炭率/% |
---|---|---|---|---|---|---|---|---|
DBA/BDM | 58 | 358 | 86 | 24.9 | 0.13 | 2.35 | 2 757 | 23.17 |
BMI/DOPO⁃DBA⁃F | 13 | 364 | 37 | 18.2 | 0.26 | 1.55 | 2 582 | 37.60 |
1 | SISK B C, CHUANG K, PAN W P. Development of bismaleimide/cyanate ester copolymers; Proceedings of the symposium on materials characterization by dynamic and modulated thermal analytical techniques[C]//Toronto:Materials Science, Chemistry,2001:25⁃26. |
2 | LI Y J, ZHANG F H, LIU Y J, et al. A tailorable series of elastomeric⁃to⁃rigid, selfhealable, shape memory bismaleimide [J]. Small, 2023: 2307244. |
3 | ZHANG Z, XIONG L B, SUN M, et al. Bistable characteristics of deployable carbon fiber/bismaleimide resin composite shells in megathermal environments [J]. Mechanics of Advanced Materials and Structures, 2024, 31(7): 1 633⁃1 644. |
4 | CAI H H, SHI J H, ZHANG X R, et al. Characterization of mechanical, electrical and thermal properties of bismaleimide resins based on different branched structures [J]. Polymers, 2023, 15(3): 592. |
5 | MA P C, DAI C T, JIANG S H. Thioetherimide⁃modified cyanate ester resin with better molding performance for glass fiber reinforced composites[J]. Polymers, 2019, 11(9): 1458. |
6 | MEI X K, YANG S, LEI J, et al. An enhanced interlayer construction strategy for high⁃frequency copper clad laminates: resolving the contradiction between signal loss and adhesion [J]. Advanced Materials Technologies, 2023, 8(23) : 2301059. |
7 | ZHOU Y F, LIU W, YE W B, et al. Design of reactive linear polyphosphazene to improve the dielectric properties and fire safety of bismaleimide composites [J]. Chemical Engineering Journal, 2024, 482: 148867. |
8 | LI X H, ZHOU Y L, BAO Y, et al. Bismaleimide/phenolic/epoxy ternary resin system for moldingcompounds in high⁃temperature electronic packaging applications [J]. Industrial & Engineering Chemistry Research, 2022, 61(12): 4 191⁃4 201. |
9 | SHI J H, WANG X, GAO Y J, et al. Composition design and property investigation of bismaleimide by branched crosslinking structure with low dielectric permittivity and high toughness [J]. Polymers for Advanced Technologies, 2024, 35(8):e6537. |
10 | JIANG W X, WU Y X, ZHANG X H, et al. Novel bismaleimide porous polymer microsphere by self⁃stabilized precipitation polymerization and its application for catalytic microreactors [J]. Macromolecules, 2022, 55(9): 3 723⁃3 733. |
11 | DERRADJI M, MEHELLI O, LIU W, et al. Sustainable and ecofriendly chemical design of high performance bio⁃based thermosets for advanced applications [J]. Frontiers in Chemistry, 2021, 9: 691117. |
12 | LIU C, YAN H, LV Q, et al. Enhanced tribological properties of aligned reduced graphene oxide⁃Fe3O4@polyphosphazene/bismaleimides composites [J]. Carbon, 2016, 102: 145⁃153. |
13 | ZHAO Q, JIANG J J, ZHANG L J, et al. Simple and mild method for the recycling of carbon⁃fiber⁃reinforced bismaleimide resin composite waste [J]. Acs Sustainable Chemistry & Engineering, 2023, 11(7): 2 830⁃2 839. |
14 | ZHAO Q, LI X D, TIAN Z S, et al. Controlling degradation and recycling of carbon fiber reinforced bismaleimide resin composites via selective cleavage of imide bonds [J]. Composites Part B⁃Engineering, 2022, 231: 109595. |
15 | CHEN X, YUAN L, ZHANG Z, et al. New glass fiber/bismaleimide composites with significantly improved flame retardancy, higher mechanical strength and lower dielectric loss [J]. Composites Part B⁃Engineering, 2015, 71: 96⁃102. |
16 | LIN C H, WANG C S. Synthesis and property of phosphorus⁃containing bismaleimide by a novel method [J]. Journal of Polymer Science Part a⁃Polymer Chemistry, 2000, 38(12): 2 260⁃2 268. |
17 | CHEN X, YE J, YUAN L, et al. Multi⁃functional ladderlike polysiloxane: synthesis, characterization and its high performance flame retarding bismaleimide resins with simultaneously improved thermal resistance, dimensional stability and dielectric properties [J]. Journal of Materials Chemistry A, 2014, 2(20): 7 491⁃7 501. |
18 | JIN W, YUAN L, LIANG G, et al. Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability [J]. ACS Applied Materials & Interfaces, 2014, 6(17): 14 931⁃14 944. |
19 | ZHANG X, AKRAM R, ZHANG S, et al. Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy [J]. Reactive & Functional Polymers, 2017, 113: 77⁃84. |
20 | TARASOVA T V, TEREKHINA S M, SALVIA M, et al. Effect of temperature on fretting fatigue characteristics of bismaleimide matrix [J]. Journal of Friction and Wear, 2013, 34(3): 225⁃231. |
21 | LI Y, ZHOU M, WANG R F, et al. Self⁃healing polyurethane elastomers: An essential review and prospects for future research [J]. European Polymer Journal, 2024, 214: 113159. |
22 | JEANBOURQUI X A, RAHMANUDIN A, GASPERINI A, et al. Engineering the self⁃assembly of diketopyrrolopyrrole⁃based molecular semiconductors via an aliphatic linker strategy [J]. Journal of Materials Chemistry A, 2017, 5(21): 10 526⁃10 536. |
23 | ZHAO W, HAN X T, LU Y B, et al. Fabrication of mechanically robust urushiol⁃based polymer coatings with excellent self⁃healing property and hydrophobicity [J]. Progress in Organic Coatings, 2023, 174: 107237. |
24 | ZHOU L, ZHANG G, FENG Y, et al. Design of a self⁃healing and flame⁃retardant cyclotriphosphazene⁃based epoxy vitrimer [J]. Journal of Materials Science, 2018, 53(9): 7 030⁃7 047. |
25 | SHAN B, WU Y, CAO X, et al. Self⁃healing and malleable waterborne polyurethane bearing aliphatic disulfide linkages with hydrophobic branching chains [J]. Polymer, 2023, 285: 126385. |
26 | RONG J, ZHONG J, YAN W, et al. Study on waterborne self⁃healing polyurethane with dual dynamic units of quadruple hydrogen bonding and disulfide bonds [J]. Polymer, 2021, 221: 123625. |
27 | DENG G, TANG C, LI F, et al. Covalent cross⁃linked polymer gels with reversible sol⁃gel transition and self⁃healing properties[J]. Macromolecules, 2010, 43(3): 1 191⁃1 194. |
28 | DENG G, LI F, YU H, et al. Dynamic hydrogels with an environmental adaptive self⁃healing ability and dual responsive sol⁃gel transitions [J]. ACS Macro Letters, 2012, 1(2): 275⁃279. |
29 | HUANG A, CHEN Y, WU C. Wound dressing double⁃crosslinked quick self⁃healing hydrogel based on carboxymethyl chitosan and modified nanocellulose [J]. Polymers, 2023, 15(16): 3389. |
30 | JIANG X, YANG X, YANG B, et al. Highly self⁃healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture [J]. Carbohydrate Polymers, 2021, 273: 118547. |
31 | CAO Z, ZUO X. Bio⁃based self⁃healing polymeric materials derived from furfuryl alcohol based on the diels⁃alder reversible reaction [J]. Polymer Science Series B, 2023, 65(4): 450⁃456. |
32 | ZHANG Y, BROEKHUIS A A, PICCHIONI F. Thermally self⁃healing polymeric materials: the next step to recycling thermoset polymers? [J]. Macromolecules, 2009, 42(6): 1 906⁃1 912. |
33 | POSTIGLIONE G, TURRI S, LEVI M. Effect of the plasticizer on the self⁃healing properties of a polymer coating based on the thermoreversible diels⁃alder reaction [J]. Progress in Organic Coatings, 2015, 78: 526⁃531. |
34 | SHU W⁃J, R⁃S TSAI. Studies on fluorine⁃containing bismaleimide resins part preparation and characteristics of reactive blends of fluorine⁃containing bismaleimide and epoxy [J]. Journal of Polymer Materials, 2014, 31(1): 49⁃62. |
35 | KUHL N, BODE S, HAGER M D, et al. Self⁃healing polymers based on reversible covalent bonds[J]. Self⁃Healing Materials,2016: 1⁃58. |
36 | LEE W J, CHA S H. Improvement of mechanical and self⁃healing properties for polymethacrylate derivatives containing maleimide modified graphene oxide [J]. Polymers, 2020, 12(3): 603. |
37 | LIU Y L, CHUO T W. Self⁃healing polymers based on thermally reversible Diels⁃Alder chemistry [J]. Polymer Chemistry, 2013, 4(7): 2 194⁃2 205. |
38 | LUO H, JIN K, TAO J, et al. Properties prediction and design of self⁃healing epoxy resin combining molecular dynamics simulation and back propagation neural network [J]. Materials Research Express, 2021, 8(4): 045308. |
39 | BAI N, SAITO K, SIMON G P. Synthesis of a diamine cross⁃linker containing Diels⁃Alder adducts to produce self⁃healing thermosetting epoxy polymer from a widely used epoxy monomer [J]. Polymer Chemistry, 2013, 4(3): 724⁃730. |
40 | MAROTTA A, DE LUNA M S, D'AVINO A, et al. Mechanical properties and reprocessability of Diels⁃Alder⁃based reversible networks from furan⁃modified resins [J]. Journal of Applied Polymer Science, 2022, 139(34): 52796. |
41 | IIJIMA T, YUASA N, TOMOI M. Modification of three⁃component bismaleimide resin by poly(phthaloyl diphenyl ether) and related copolymers [J]. Journal of Applied Polymer Science, 2001, 82(12): 2 991⁃3 000. |
42 | GUO M C, CUI Y. Effect of a additive on the curing properties of the mixed allyl phenols modified bismaleimide resin [J]. Acta Polymerica Sinica, 2015(9): 1 044⁃1 052. |
43 | LIAN T, ZHANG S, XU Q, et al. Self⁃healing and flame⁃retardant modifications of epoxy resins by the Diels⁃Alder release⁃delivery strategy for a high⁃efficiency and green application [J]. Industrial & Engineering Chemistry Research, 2023, 62(15): 6 019⁃6 031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||