
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (2): 119-131.DOI: 10.19491/j.issn.1001-9278.2021.02.019
收稿日期:
2020-07-09
出版日期:
2021-02-26
发布日期:
2021-02-22
基金资助:
Received:
2020-07-09
Online:
2021-02-26
Published:
2021-02-22
Contact:
CHEN Yajun
E-mail:chenyajun@th.btbu.edu.cn
摘要:
针对生物基阻燃剂在绿色阻燃聚乳酸(PLA)领域的应用,简要介绍了生物基阻燃剂的阻燃改性技术,重点分析和综述了近5年含纤维素、木质素、壳聚糖、植酸、环糊精以及淀粉等生物基阻燃剂阻燃PLA的研究进展。最后,指出目前生物基阻燃剂应用和发展存在的问题,并对生物基阻燃剂在PLA阻燃领域发展的趋势进行了展望。
中图分类号:
何京秀, 陈雅君. 生物基阻燃剂阻燃聚乳酸的研究进展[J]. 中国塑料, 2021, 35(2): 119-131.
HE Jingxiu, CHEN Yajun. Research Progress in Flame⁃retardant PLA Containing Bio⁃based Flame Retardants[J]. China Plastics, 2021, 35(2): 119-131.
1 | WASTON D A V, SCHIRALDI D A. Biomolecules as Flame Retardant Additives for Polymers: A Review[J]. Polymers, 2020, 12(4): 849. |
2 | 毛郑州, 吴彦城, 汪朝阳. 聚乳酸本质阻燃改性研究进展[J]. 化工新型材料, 2018, 46(4):43⁃46. |
MAO Z Z, WU Y C, WANG Z Y. Research Progress in Inherent Flame Retardance Modification of Poly(lactic acid)[J]. New Chemical Materials, 2018, 46(4):43⁃46. | |
3 | 丁晓庆, 王新龙. 高热变形温度聚乳酸的研究进展[J]. 现代塑料加工应用, 2018, 30(5):56⁃58. |
DING X Q, WANG X L. Research Progress on PLA with High Heat Deflection Temperature[J]. Modern Plastics Processing and Applications, 2018, 30(5):56⁃58. | |
4 | 马 东, 赵培华, 李 娟. 生物基阻燃剂的设计、制备和应用研究进展[J]. 工程塑料应用, 2016, 44(10):134⁃137. |
MA D, ZHAO P H, LI J. Progress in Design, Preparation and Application of Bio⁃Based Flame Retardants[J]. Engineering Plastics Application, 2016, 44(10):134⁃137. | |
5 | COSTES L, LAOUTID F, BROHEZ S, et al. Bio⁃Based Flame Retardants: When Nature Meets Fire Protection[J]. Materials Science and Engineering: R: Reports, 2017, 117:1⁃25. |
6 | THOMAS B, RAJ M C, ATHIRA K B, et al. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications[J]. Chemical Reviews, 2018, 118(24):11 575⁃11 625. |
7 | GUO Y C, HE S, ZUO X H, et al. Incorporation of Cellulose with Adsorbed Phosphates into Poly(lactic acid) for Enhanced Mechanical and Flame Retardant Properties[J]. Polymer Degradation and Stability, 2017, 144:24⁃32. |
8 | DASAN Y K, BHAT A H, AHMAD F. Polymer Blend of PLA/PHBV Based Bionanocomposites Reinforced with Nanocrystalline Cellulose for Potential Application as Packaging Material[J]. Carbohydrate Polymers, 2017, 157:1 323⁃1 332. |
9 | COSTES L, LAOUTID F, KHELIFA F, et al. Cellulose/Phosphorus Combinations for Sustainable Fire Retarded Polylactide[J]. European Polymer Journal, 2016, 74:218⁃228. |
10 | ZHU T, GUO J, FEI B, et al. Preparation of Methacrylic Acid Modified Microcrystalline Cellulose and Their Applications in Polylactic Acid: Flame Retardancy, Mechanical Properties, Thermal Stability and Crystallization Behavior[J]. Cellulose, 2020, 27(4):2 309⁃2 323. |
11 | XU K M, SHI Z J, LYU J H, et al. Effects of Hydrothermal Pretreatment on Nano⁃Mechanical Property of Switchgrass Cell Wall and on Energy Consumption of Isolated Lignin⁃Coated Cellulose Nanofibrils by Mechanical Grinding[J]. Industrial Crops and Products, 2020, 149:112 317. |
12 | FENG J B, SUN Y Q, SONG P G, et al. Fire⁃Resistant, Strong, and Green Polymer Nanocomposites Based on Poly(lactic acid) and Core–Shell Nanofibrous Flame Retardants[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9):7 894⁃7 904. |
13 | YIN W D, CHEN L, LU F Z, et al. Mechanically Robust, Flame⁃Retardant Poly(lactic acid) Biocomposites via Combining Cellulose Nanofibers and Ammonium Polyphosphate[J]. ACS Omega, 2018, 3(5):5 615⁃5 626. |
14 | YANG H T, YU B, XU X Det al. Lignin⁃Derived Bio⁃Based Flame Retardants Toward High⁃Performance Sustainable Polymeric Materials[J]. Green Chemistry, 2020, 22: 2 129⁃ 2 161. |
15 | 程 辉, 余 剑, 姚梅琴, 等. 木质素慢速热解机理[J]. 化工学报, 2013, 64(5):1 757⁃1 765. |
CHENG H, YU J, YAO M Q, et al. Mechanism Analysis of Lignin Slow Pyrolysis[J]. CIESC Journal, 2013, 64(5):1 757⁃1 765. | |
16 | COSTES L, LAOUTID F, AGUEDO M, et al. Phosphorus and Nitrogen Derivatization as Efficient Route for Improvement of Lignin Flame Retardant Action in PLA[J]. European Polymer Journal, 2016, 84:652⁃667. |
17 | GORDOBIL O, DELUCIS R, EGÜÉS I, et al. Kraft Lignin as Filler in PLA to Improve Ductility and Thermal Properties[J]. Industrial Crops and Products, 2015, 72:46⁃53. |
18 | CAYLA A, RAULT F, GIRAUD S, et al. PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile[J]. Polymers, 2016, 8(9):331. |
19 | MAQSOOD, LANGENSIEPEN, SEIDE. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of Their Melt⁃Spinnability[J]. Molecules, 2019, 24(8):1 513. |
20 | ZHANG R, XIAO X F, TAI Q L, et al. The Effect of Different Organic Modified Montmorillonites (OMMTs) on the Thermal Properties and Flammability of PLA/MCAPP/Lignin Systems[J]. Journal of Applied Polymer Science, 2013, 127(6):4 967⁃4 973. |
21 | SONG Y, ZONG X, WANG N, et al. Preparation of Γ⁃Divinyl⁃3⁃Aminopropyltriethoxysilane Modified Lignin and Its Application in Flame Retardant Poly(lactic acid)[J]. Materials, 2018, 11(9):1 505. |
22 | ZHANG R, XIAO X F, TAI Q L, et al. Modification of Lignin and Its Application as Char Agent in Intumescent Flame⁃Retardant Poly(lactic acid)[J]. Polymer Engineering & Science, 2012, 52(12):2 620⁃2 626. |
23 | ZONG E M, LIU X H, LIU L N, et al. Graft Polymerization of Acrylic Monomers Onto Lignin with CaCl2–H2O2 as Initiator: Preparation, Mechanism, Characterization, and Application in Poly(lactic acid)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1):337⁃348. |
24 | XIAO Y Y, ZHENG Y Y, WANG X, et al. Preparation of a Chitosan⁃Based Flame⁃Retardant Synergist and Its Application in Flame⁃Retardant Polypropylene[J]. Journal of Applied Polymer Science, 2014, 131(19): 40 845. |
25 | CHEN C, GU X Y, JIN X D, et al. The Effect of Chitosan on the Flammability and Thermal Stability of Polylactic Acid/Ammonium Polyphosphate Biocomposites[J]. Carbohydrate Polymers, 2017, 157:1 586⁃1 593. |
26 | ZHANG Q Y, WANG W J, GU X Y, et al. Is there any Way to Simultaneously Enhance both the Flame Retardancy and Toughness of Polylactic Acid?[J]. Polymer Composites, 2019, 40(3):932⁃941. |
27 | JING J, ZHANG Y, TANG X L, et al. Layer by Layer Deposition of Polyethylenimine and Bio⁃Based Polyphosphate on Ammonium Polyphosphate: A Novel Hybrid for Simultaneously Improving the Flame Retardancy and Toughness of Polylactic Acid[J]. Polymer, 2017, 108:361⁃371. |
28 | XIONG Z Q, ZHANGY, DU X Y, et al. Green And Scalable Fabrication of Core⁃Shell Bio⁃Based Flame Retardants for Reducing Flammability of Polylactic Acid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 8 954⁃8 963. |
29 | ZHANG Y, XIONG Z Q, GE H D, et al. Core–Shell Bioderived Flame Retardants Based on Chitosan/Alginate Coated Ammonia Polyphosphate for Enhancing Flame Retardancy of Polylactic Acid[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16):6 402⁃6 412. |
30 | WANG K P, LIU Q. Chemical Structure Analyses of Phosphorylated Chitosan[J]. Carbohydrate Research, 2014, 386:48⁃56. |
31 | HU S, SONG L, PAN H F, et al. Thermal Properties and Combustion Behaviors of Flame Retarded Epoxy Acrylate with a Chitosan Based Flame Retardant Containing Phosphorus and Acrylate Structure[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97:109⁃115. |
32 | SHI X X, JIANG S H, HU Y, et al. Phosphorylated Chitosan⁃Cobalt Complex: A Novel Green Flame Retardant for Polylactic Acid[J]. Polymers for Advanced Technologies, 2018, 29(2):860⁃866. |
33 | ZHOU Y, DING C Y, QIAN X R, et al. Further Improvement of Flame Retardancy of Polyaniline⁃Deposited Paper Composite through Using Phytic Acid as Dopant or Co⁃Dopant[J]. Carbohydrate Polymers, 2015, 115:670⁃676. |
34 | CHENG X W, GUAN J P, TANG R C, et al. Phytic Acid as a Bio⁃Based Phosphorus Flame Retardant for Poly(lactic acid) Nonwoven Fabric[J]. Journal of Cleaner Production, 2016, 124:114⁃119. |
35 | COSTES L, LAOUTID F, DUMAZERT L, et al. Metallic Phytates as Efficient Bio⁃Based Phosphorous Flame Retardant Additives for Poly(lactic acid)[J]. Polymer Degradation and Stability, 2015, 119:217⁃227. |
36 | YANG W, TAWIAH B, YU C, et al. Manufacturing, Mechanical And Flame Retardant Properties of Poly(Lactic Acid)Biocomposites Based on Calcium Magnesium Phytate And Carbon Nanotubes[J]. Composites Part A: Applied Science And Manufacturing, 2018, 110: 227⁃236. |
37 | FENG X M, WANG X, CAI W, et al. Studies on Synthesis of Electrochemically Exfoliated Functionalized Graphene And Polylactic Acid/Ferric Phytate Functionalized Graphene Nanocomposites as New Fire Hazard Suppression Materials[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25 552⁃25 562. |
38 | ROSELY C V S, JOSEPH A M, LEUTERITZ A, et al. Phytic Acid Modified Boron Nitride Nanosheets as Sustainable Multifunctional Nanofillers for Enhanced Properties of Poly(l⁃Lactide)[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4):1 868⁃1 878. |
39 | JIN X D, CUI S P, SUN S B, et al. The Preparation of a Bio⁃Polyelectrolytes Based Core⁃Shell Structure and Its Application in Flame Retardant Polylactic Acid Composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124:105 485. |
40 | LUDA M P, ZANETTI M. Cyclodextrins and Cyclodextrin Derivatives as Green Char Promoters in Flame Retardants Formulations for Polymeric Materials. a Review[J]. Polymers, 2019, 11(4):664. |
41 | 周新科, 程春祖, 肖梦苑,等. β⁃环糊精基阻燃剂的应用进展[J]. 精细化工, 2020,37(12):2 399⁃2 405. |
ZHOU X K, CHENG C Z, XIAO M Y, et al. Application Progress of β⁃Cyclodextrin⁃Based Flame Retardants[J]. Fine Chemicals, 2020,37(12):2 399⁃2 405. | |
42 | WANG X F, XING W Y, WANG B B, et al. Comparative Study on the Effect of Beta⁃Cyclodextrin and Polypseudorotaxane as Carbon Sources on the Thermal Stability and Flame Retardance of Polylactic Acid[J]. Industrial & Engineering Chemistry Research, 2013, 52(9):3 287⁃3 294. |
43 | TEOH E L, CHOW W S, JAAFAR M. Β⁃Cyclodextrin as a Partial Replacement of Phosphorus Flame Retardant for Poly(lactic acid)/Poly(methyl methacrylate): A more Environmental Friendly Flame⁃Retarded Blends[J]. Polymer⁃Plastics Technology and Engineering, 2017, 56(15):1 680⁃1 694. |
44 | ZHANG Y, HAN P Y, FANG Z P. Synthesis of Phospholipidated Β⁃Cyclodextrin and Its Application for Flame⁃Retardant Poly(lactic acid) with Ammonium Polyphosphate[J]. Journal of Applied Polymer Science, 2018, 135(13):46 054. |
45 | ANSARI H, SHABANIAN M, KHONAKDAR H A. Using a Β⁃Cyclodextrin⁃Functional Fe3O4 as a Reinforcement of PLA: Synthesis, Thermal, and Combustion Properties[J]. Polymer⁃Plastics Technology and Engineering, 2017, 56(12):1 366⁃1 373. |
46 | ISMAIL N A, MOHD TAHIR S, NORIHAN Y, et al. Synthesis and Characterization of Biodegradable Starch⁃Based Bioplastics[J]. Materials Science Forum, 2016, 846:673⁃678. |
47 | LIU X X, YU L, XIE F W, et al. Kinetics and Mechanism of Thermal Decomposition of Cornstarches with Different Amylose/Amylopectin Ratios[J]. Starch/Staerke, 2010, 62(3/4):139⁃146. |
48 | WANG J J, REN Q, ZHENG W G, et al. Improved Flame⁃Retardant Properties of Poly(lactic acid) Foams Using Starch as a Natural Charring Agent[J]. Industrial & Engineering Chemistry Research, 2014, 53(4):1 422⁃1 430. |
49 | MAQSOOD M, SEIDE G. Improved Thermal Processing of Polylactic Acid/Oxidized Starch Composites and Flame⁃Retardant Behavior of Intumescent Non⁃Wovens[J]. Coatings, 2020, 10(3):291. |
50 | MAQSOOD M, SEIDE G. Investigation of the Flammability and Thermal Stability of Halogen⁃Free Intumescent System in Biopolymer Composites Containing Biobased Carbonization Agent and Mechanism of Their Char Formation[J]. Polymers, 2018, 11(1):48. |
51 | JING J, ZHANG Y, TANG X L, et al. Synthesis of a Highly Efficient Phosphorus⁃Containing Flame Retardant Utilizing Plant⁃Derived Diphenolic Acids and Its Application in Polylactic Acid[J]. RSC Advances, 2016, 6(54):49 019⁃49 027. |
52 | ZHANG T, YAN H Q, SHEN L, et al. Chitosan/Phytic Acid Polyelectrolyte Complex: A Green and Renewable Intumescent Flame Retardant System for Ethylene–Vinyl Acetate Copolymer[J]. Industrial & Engineering Chemistry Research, 2014, 53(49):19 199⁃19 207. |
53 | JING J, ZHANG Y, TANG X L, et al. Layer by Layer Deposition of Polyethylenimine and Bio⁃Based Polyphosphate on Ammonium Polyphosphate: A Novel Hybrid for Simultaneously Improving the Flame Retardancy and Toughness of Polylactic Acid[J]. Polymer, 2017, 108:361⁃371. |
54 | JING J, ZHANG Y, FANG Z P, et al. Core⁃Shell Flame Retardant/Graphene Oxide Hybrid: a Self⁃Assembly Strategy towards Reducing Fire Hazard and Improving Toughness of Polylactic Acid[J]. Composites Science and Technology, 2018, 165:161⁃167. |
55 | ZHANG S, JIN X D, GU X Y, et al. The Preparation of Fully Bio⁃Based Flame Retardant Poly(lactic acid) Composites Containing Casein[J]. Journal of Applied Polymer Science, 2018, 135(33):46 599. |
56 | LAOUTID F, VAHABI H, SHABANIAN M, et al. A New Direction in Design of Bio⁃Based Flame Retardants for Poly(lactic acid)[J]. Fire and Materials, 2018, 42(8):914⁃924. |
57 | LI D F, ZHAO X, JIA Y W, et al. Simultaneously Enhance both the Flame Retardancy and Toughness of Polylactic Acid by the Cooperation of Intumescent Flame Retardant and Bio⁃Based Unsaturated Polyester[J]. Polymer Degradation and Stability, 2019, 168:108 961. |
[1] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[2] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[3] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[4] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[5] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[6] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
[7] | 毛晨, 刘番, 鄂毅, 邹姝燕, 龚兴厚. 纳米CoFe2O4的制备及其对PLA结晶性能的影响[J]. 中国塑料, 2022, 36(1): 9-14. |
[8] | 韦宗辰, 郗悦玮, 翁云宣. 聚乳酸基复合骨组织修复材料的研究现状及进展[J]. 中国塑料, 2021, 35(9): 136-146. |
[9] | 唐于婧, 王亚桥, 倪敬越, 王从龙, 王向东. 立构复合晶对聚乳酸发泡行为的影响[J]. 中国塑料, 2021, 35(8): 117-124. |
[10] | 李玉竹, 姚利辉, 叶世强, 吕国永, 刘盼盼, 徐龙飞, 仇丹. 生物降解材料在水环境中降解性能的研究进展[J]. 中国塑料, 2021, 35(7): 103-114. |
[11] | 段续远, 郑红娟. 改性聚乳酸发泡技术研究进展[J]. 中国塑料, 2021, 35(7): 134-139. |
[12] | 蔡小芳, 袁航, 刁晓倩, 李字义, 封棣. 食品接触聚乳酸杯盖中的滑石粉迁移分析[J]. 中国塑料, 2021, 35(7): 91-96. |
[13] | 杨文杰, 何佳文, 朱寒宾, 王思思, 李熹平. 石墨烯增强聚乳酸力学性能及其发泡行为研究[J]. 中国塑料, 2021, 35(6): 26-32. |
[14] | 孙东宝, 路琴, 陆鑫禹, 贾王一, 曹尚. PLA/稻壳粉复合材料界面改性方法及性能研究[J]. 中国塑料, 2021, 35(6): 80-84. |
[15] | 张博, 王小峰, 郭萌, 白志媛, 任翠红, 韩文娟, 宇山浩, 李倩. 聚乳酸表面羧基化改性及细胞相容性研究[J]. 中国塑料, 2021, 35(5): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||