
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (11): 7-14.DOI: 10.19491/j.issn.1001-9278.2021.11.002
收稿日期:
2021-04-25
出版日期:
2021-11-26
发布日期:
2021-11-23
GU Lin, ZHU Yuting, HE Jialong, ZHU Huihao, MA Yulu, XIE Linsheng()
Received:
2021-04-25
Online:
2021-11-26
Published:
2021-11-23
Contact:
XIE Linsheng
E-mail:clxw@ecust.edu.cn
摘要:
采用微纳层叠共挤出设备制备聚乳酸(PLA)/聚己内酯(PCL)可降解微层薄膜,利用扫描电子显微镜、万能材料试验仪、差示扫描量热仪和热失重分析仪等对微层薄膜的微观结构、力学性能和热稳定性进行表征。结果表明,PLA/PCL微层薄膜的热稳定性和力学性能均优于PLA/PCL共混薄膜;PCL对微层薄膜具有明显的增韧效果,同时可提高微层薄膜的结晶性能和热稳定性;当PLA/PCL配比为40/60、50/50或60/40时,PLA/PCL微层薄膜具有良好的综合性能,此时拉伸强度高于51.2 MPa,断裂伸长率高于568.6 %,冲击强度高于100.7 J/m,微层薄膜中PLA相的结晶度高于43.28 %、热降解峰值温度高于373.22 ℃。
中图分类号:
谷琳, 朱钰婷, 何家隆, 朱惠豪, 马玉录, 谢林生. 基于微纳层叠共挤的PLA/PCL可降解微层薄膜的制备及性能研究[J]. 中国塑料, 2021, 35(11): 7-14.
GU Lin, ZHU Yuting, HE Jialong, ZHU Huihao, MA Yulu, XIE Linsheng. Preparation and Properties of Poly(lactic acid)/Polycaprolactone Degradable Multilayered Films Based on Micro⁃nano Multiplayer Coextrusion[J]. China Plastics, 2021, 35(11): 7-14.
样品种类 | 拉伸强度/MPa | 断裂伸长率/% | 冲击强度/J·m-1 |
---|---|---|---|
共混薄膜 | 48.3±1.7 | 495.7±12.6 | 89.7±2.9 |
微层薄膜 | 55.8±1.9 | 617.3±14.9 | 123.3±3.6 |
样品种类 | 拉伸强度/MPa | 断裂伸长率/% | 冲击强度/J·m-1 |
---|---|---|---|
共混薄膜 | 48.3±1.7 | 495.7±12.6 | 89.7±2.9 |
微层薄膜 | 55.8±1.9 | 617.3±14.9 | 123.3±3.6 |
样品 | PCL | PLA | ||||||
---|---|---|---|---|---|---|---|---|
Tc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | Tcc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | |
共混薄膜 | 28.88 | 55.96 | 33.13 | 48.72 | 101.08 | 167.15 | 20.54 | 43.90 |
微层薄膜 | 32.18 | 56.18 | 33.82 | 49.74 | 106.66 | 166.71 | 22.18 | 47.39 |
样品 | PCL | PLA | ||||||
---|---|---|---|---|---|---|---|---|
Tc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | Tcc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | |
共混薄膜 | 28.88 | 55.96 | 33.13 | 48.72 | 101.08 | 167.15 | 20.54 | 43.90 |
微层薄膜 | 32.18 | 56.18 | 33.82 | 49.74 | 106.66 | 166.71 | 22.18 | 47.39 |
PLA/PCL | PCL | PLA | ||||||
---|---|---|---|---|---|---|---|---|
Tc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | Tcc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | |
100/0 | — | — | — | — | 102.68 | 166.71 | 34.14 | 36.47 |
80/20 | 32.52 | 55.28 | 11.59 | 42.63 | 104.43 | 168.04 | 29.94 | 39.98 |
60/40 | 32.69 | 55.91 | 25.26 | 46.43 | 102.93 | 167.9 | 24.31 | 43.28 |
50/50 | 32.18 | 56.18 | 33.82 | 49.74 | 106.66 | 166.71 | 22.18 | 47.39 |
40/60 | 33.37 | 56.09 | 44.46 | 54.48 | 105.98 | 166.98 | 19.79 | 52.85 |
20/80 | 32.00 | 55.93 | 60.56 | 55.66 | 107.73 | 166.63 | 10.36 | 55.37 |
0/100 | 26.70 | 55.75 | 61.96 | 45.56 | — | — | — | — |
PLA/PCL | PCL | PLA | ||||||
---|---|---|---|---|---|---|---|---|
Tc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | Tcc/°C | Tm/°C | ΔHm/J·g-1 | Xc/% | |
100/0 | — | — | — | — | 102.68 | 166.71 | 34.14 | 36.47 |
80/20 | 32.52 | 55.28 | 11.59 | 42.63 | 104.43 | 168.04 | 29.94 | 39.98 |
60/40 | 32.69 | 55.91 | 25.26 | 46.43 | 102.93 | 167.9 | 24.31 | 43.28 |
50/50 | 32.18 | 56.18 | 33.82 | 49.74 | 106.66 | 166.71 | 22.18 | 47.39 |
40/60 | 33.37 | 56.09 | 44.46 | 54.48 | 105.98 | 166.98 | 19.79 | 52.85 |
20/80 | 32.00 | 55.93 | 60.56 | 55.66 | 107.73 | 166.63 | 10.36 | 55.37 |
0/100 | 26.70 | 55.75 | 61.96 | 45.56 | — | — | — | — |
样品 | T10%/℃ | T50%/℃ | TPLA/℃ | TPCL/℃ |
---|---|---|---|---|
共混薄膜 | 353.16 | 397.50 | 366.39 | 420.92 |
微层薄膜 | 360.73 | 404.28 | 378.58 | 424.46 |
样品 | T10%/℃ | T50%/℃ | TPLA/℃ | TPCL/℃ |
---|---|---|---|---|
共混薄膜 | 353.16 | 397.50 | 366.39 | 420.92 |
微层薄膜 | 360.73 | 404.28 | 378.58 | 424.46 |
PLA/PCL | T10%/℃ | T50%/℃ | TPLA/℃ | TPCL/℃ |
---|---|---|---|---|
100/0 | 328.02 | 357.40 | 364.74 | — |
80/20 | 343.79 | 370.71 | 366.55 | 403.71 |
60/40 | 353.54 | 395.86 | 373.22 | 423.25 |
50/50 | 360.73 | 404.28 | 378.58 | 424.46 |
40/60 | 368.02 | 426.54 | 379.31 | 430.03 |
20/80 | 387.87 | 442.91 | 387.35 | 440.69 |
0/100 | 426.01 | 452.86 | — | 444.43 |
PLA/PCL | T10%/℃ | T50%/℃ | TPLA/℃ | TPCL/℃ |
---|---|---|---|---|
100/0 | 328.02 | 357.40 | 364.74 | — |
80/20 | 343.79 | 370.71 | 366.55 | 403.71 |
60/40 | 353.54 | 395.86 | 373.22 | 423.25 |
50/50 | 360.73 | 404.28 | 378.58 | 424.46 |
40/60 | 368.02 | 426.54 | 379.31 | 430.03 |
20/80 | 387.87 | 442.91 | 387.35 | 440.69 |
0/100 | 426.01 | 452.86 | — | 444.43 |
1 | LUCKACHAN G E, PILLAI C K S. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives[J]. Journal of Polymers and the Environment, 2011, 19(3):637⁃676. |
2 | MOHANTY A K, MISRA M, G.Biofibres HINRICHSEN, Biodegradable Polymers and Biocomposites: An Overview[J]. Macromolecular Materials and Engineering, 2000, 276/277(1):1⁃24. |
3 | VROMAN I, TIGHZERT L. Biodegradable Polymers[J]. Materials, 2009(2): 307⁃344. |
4 | MADHAVAN N K, NAIR N R, JOHN R P. An Overview of the Recent Developments in Polylactide (PLA) Research[J]. Bioresource Technology, 2010, 101(22):8 493⁃8 501. |
5 | LEHERMEIER H J, DORGAN J R. Melt Rheology of Poly(lactic acid): Consequences of Blending Chain Architectures[J]. Polymer Engineering & Science, 2001, 41(12):2 172–2 184. |
6 | WOODRUFF M A, HUTMACHER D W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century[J]. Progress in Polymer Science, 2010, 35(10):1 217⁃1 256. |
7 | CHEN J, LIANG L L, DE F W, et al. Green Poly(ε⁃caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(ε⁃caprolactone) Blend Fiber Mats[J]. ACS Sustainable Chemistry & Engineering, 2014, 2:2 102⁃2 110. |
8 | NAVARRO⁃BAENA I, SESSINI V, DOMINICI F, et al. Design of Biodegradable Blends Based on PLA and PCL: From Morphological, Thermal and Mechanical Stu⁃dies to Shape Memory Behavior[J]. Polymer Degradation and Stability, 2016, 132:97⁃108. |
9 | SHEN J, WANG M, LI J, et al. Simulation of Mechanical Properties of Multilayered Propylene⁃Ethylene Copolymer/ethylene 1⁃octene Copolymer Composites by Equivalent Box Model and its Experimental Verification[J]. European Polymer Journal, 2009, 45(11):3 269⁃3 281. |
10 | SUNG K, HILTNER A, BAER E. Three⁃dimensional Interaction of Crazes and Micro⁃shearbands in PC⁃SAN Microlayer Composites[J]. Journal of Materials Science, 1994, 29(21):5 559⁃5 568. |
11 | NAGARAJAN V, ZHANG KY, MISRA M, et al. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature[J]. Acs Applied Materials & Interfaces, 2015, 7(21):11 203⁃11 214. |
12 | LUYT A S, GASMI S. Influence of Blending and Blend Morphology on the Thermal Properties and Crystallization Behaviour of PLA and PCL in PLA/PCL Blends[J]. Journal of Materials Science, 2016, 51(9):4 670⁃4 681. |
13 | CHEN J, DENG C, HONG R, et al. Effect of Thermal Annealing on Crystal Structure and Properties of PLLA/PCL blend[J]. Journal of Polymer Research, 2020, 27(8):221. |
14 | MOTLOUNG M P, OJIJO V, BANDYOPADHYAY J, et al. Morphological Characteristics and Thermal, Rheological, and Mechanical Properties of Cellulose Nanocrystals⁃containing Biodegradable Poly(lactic acid)/poly(ε⁃caprolactone) Blend Composites[J]. Journal of Applied Polymer Science, 2020, 137(19):48665. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[3] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[4] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[5] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[6] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[7] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[8] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[9] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[10] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[11] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[12] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[13] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[14] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
[15] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||