
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (6): 100-107.DOI: 10.19491/j.issn.1001-9278.2022.06.016
收稿日期:
2022-01-08
出版日期:
2022-06-26
发布日期:
2022-06-27
通讯作者:
周国发,男,教授,研究领域:聚合物成型理论与技术,ndzgf@163.com基金资助:
LIU Zheng1, LIU Zhenfeng2, ZHOU Guofa1()
Received:
2022-01-08
Online:
2022-06-26
Published:
2022-06-27
Contact:
ZHOU Guofa
E-mail:ndzgf@163.com
摘要:
针对我国造粒工艺存在关键质量属性(粒径分布均匀性、颗粒表观质量和制粒收率)难以调控的行业共性问题,基于Edinburgh Elastic?Plastic Adhesion接触模型,构建了连续异向啮合双螺杆高剪切湿法制粒过程的仿真方法,模拟研究了过程参数?粒径分布均匀性和收率的协同耦合演化规律,以此诠释了双螺杆湿法制粒关键质量属性的调控机理。结果表明,连续异向啮合双螺杆高剪切湿法制粒机能制备表面光滑的球化颗粒,粒径与粉体喂料速度呈正关联关系,而与螺杆转速呈负关联关系,制粒收率与粉体喂料速度、螺杆转速均呈现先增后减的演化规律;在粉体喂料速度为360 kg/h或螺杆转速为1 400 r/min时,制粒收率处于最佳状态,其最优制粒收率值分别为87.9 %和83.91 %;制粒粒径主要受控于颗粒平均停留时间和持有颗粒质量,且呈正关联关系,以此提出了通过粉体失重喂料装置螺杆和异向啮合双螺杆高剪切湿法制粒机螺杆的变频转速控制,在线实时调控合格颗粒粒径和收率的技术方法。
中图分类号:
刘政, 刘振峰, 周国发. 双螺杆湿法制粒关键质量属性调控机理模拟研究[J]. 中国塑料, 2022, 36(6): 100-107.
LIU Zheng, LIU Zhenfeng, ZHOU Guofa. Simulation study on regulation mechanism of key quality attributes of twin⁃screw wet granulation[J]. China Plastics, 2022, 36(6): 100-107.
颗粒材料 | 黏附力强度/N | 表面能/J•m-2 | 接触塑性比 | 黏附分支指数 | 切向刚度系数 |
---|---|---|---|---|---|
PE⁃HD‐PE⁃HD | -0.001 | 3.00 | 0.8 | 1.5 | 0.30 |
PE⁃HD‐碳酸钙 | -0.001 | 2.00 | 0.5 | 1.5 | 0.25 |
碳酸钙‐碳酸钙 | -0.001 | 0.25 | 0.2 | 1.5 | 0.80 |
颗粒材料 | 黏附力强度/N | 表面能/J•m-2 | 接触塑性比 | 黏附分支指数 | 切向刚度系数 |
---|---|---|---|---|---|
PE⁃HD‐PE⁃HD | -0.001 | 3.00 | 0.8 | 1.5 | 0.30 |
PE⁃HD‐碳酸钙 | -0.001 | 2.00 | 0.5 | 1.5 | 0.25 |
碳酸钙‐碳酸钙 | -0.001 | 0.25 | 0.2 | 1.5 | 0.80 |
1 | Lajos Madarász, Zsombor Kristóf Nagy, HofferIstván, et al. Real⁃time feedback control of twin⁃screw wet granulation based on image analysis[J]. International Journal of Pharmaceutics,2018, 547( 1/2): 360⁃367. |
2 | Dhengerm, Cartwrightjj, Doughtydg, et a1. Twin screw wet granulation: effect of powder feed rate[J]. Adv Powder Technol,201l,22(2):162⁃166. |
3 | Nandi U, Trivedi V, Ross S A, et al. Advances in twin⁃screw granulation processing[J]. Pharmaceutics, 2021,13(5): 624⁃655. |
4 | Kyu⁃Min Hwang, Cho Cheol⁃Hee, Yoo Seung⁃Dong, et.al. Continuous twin screw granulation: impact of the starting material properties and various process parameters[J]. Powder Technology, 2019, 356: 847⁃857. |
5 | Stienvuthchan S. Wet granulation: effect of surface tension, polymer concentration and particle morphology on particle agglomeration and granule strength[D]. Purdue University, 1997. |
6 | Dejan Djuric, Peter Kleinebudde. Impact of screw elements on continuous granulation with a twin⁃screw extruder [J]. Journal of pharmaceutical sciences,2008,97(11):4 934⁃4 942. |
7 | Lalith Kotamarthy, Rohit Ramachandran. Mechanistic understanding of the effects of process and design parameters on the mixing dynamics in continuous twin⁃screw granulation[J].Powder Technology, 2021, 390(9):73⁃85. |
8 | Portier C, Pandelaere K, Delaet U,et al. Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations[J]. International Journal of Pharmaceutics, 2020, 576(2):118981. |
9 | Liu Huolong, Brendon Ricart, Courtney Stanton, et al. Design space determination and process optimization in at⁃scale continuous twin screw wet granulation[J].Computers & Chemical Engineering, 2019,125: 271⁃286. |
10 | Ryckaertt A. Towards an enhanced process understanding for a continuous pharmaceutical manufacturing process of tablets based on twin⁃screw wet granulation [D]. 2021, Ghent University,Gent,Belgium. |
11 | Christoph Portier, Kenny Pandelaere, Urbain Delaet, et al. Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations[J],International Journal of Pharmaceutics,2020, 576(2): 118981. |
12 | Thakur Subhash C, Morrissey John P, Jin Sun, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto⁃plastic contact model[J]. Granular Matter,2014,16(3): 383⁃400. |
13 | 祁晗璐,王嘉骏,顾雪萍,等.黏性颗粒团聚机理及流化特性研究进展[J].过程工程学报,2019,19(01):55⁃63. |
QI H L, Wang J J,Gu,X P, et al. Research progress on agglomeration mechanism and fluidization characteristics of viscous particles [J]. Chinese Journal of Process Engineering, 2019,19(01):55⁃63. | |
14 | Morrissey J P, Chen J Y. A DEM study of silo discharge of a cohesive solid [C]. III International Conference on Particle⁃Based Methods: fundamentals and applications (PARTICLES 2013). Stuttgart, 2013: 18⁃20. |
15 | Coetzee C J. Edinburgh⁃Elasto⁃Plastic⁃Adhesion (EEPA) Contact Model ⁃ Implementation in PFC[R]. Stellenbosch South Africa: Stellenbosch University,2020:1⁃19. |
16 | 单喜良,马玉录,谢林生,等.基于离散元方法的差动自清洁混合器混合特性研究[J].中国塑料,2020,34(04):54⁃59. |
SHAN X L, Ma Y L, XIE L S, et al. Study on mixing characteristics of differential self⁃cleaning mixer based on discrete element method [J]. China Plastics, 2020,34(04):54⁃59. |
[1] | 黄雪梅, 柳和生, 黄兴元, 余忠, 江诗雨. U型件的气体辅助挤出成型工艺的数值模拟与实验研究[J]. 中国塑料, 2022, 36(7): 93-103. |
[2] | 邓世欣, 王建, 杨卫民. 增强反应注射成型机混合头内流体高压高速对撞过程模拟与分析[J]. 中国塑料, 2022, 36(6): 130-136. |
[3] | 张庆弢, 毕超. 基于CFD⁃DEM的水下切粒装置水室内颗粒流动过程数值模拟[J]. 中国塑料, 2022, 36(6): 87-91. |
[4] | 徐晓卉, 赵洁, 沈康俊, 刘曙. 聚苯乙烯杯中苯乙烯在豆制品、粥类食品和醇类模拟物中的迁移对比[J]. 中国塑料, 2022, 36(4): 128-134. |
[5] | 蒋经纬, 刘振峰, 周国发. 连续化双螺杆混合机混合均匀性调控研究[J]. 中国塑料, 2022, 36(4): 142-148. |
[6] | 王颢霖, 朱向哲. 双锥型螺杆挤出机固体输送离散元分析[J]. 中国塑料, 2022, 36(4): 83-88. |
[7] | 班董董, 王丹华, 刘奎, 李亚楠, 李涵, 戴亚辉. 波状双螺杆元件混炼性能的数值模拟[J]. 中国塑料, 2022, 36(4): 95-101. |
[8] | 李永青, 杨小龙, 陈文静, 闫晓堃, 马秀清. 改性剂及高密度聚乙烯插层和剥离蒙脱石的分子动力学模拟[J]. 中国塑料, 2022, 36(2): 67-74. |
[9] | 董星彤, 王向东, 孙晓红, 陈士宏. 密度泛函理论在聚合物发泡领域中的应用研究进展[J]. 中国塑料, 2021, 35(7): 126-133. |
[10] | 盛天阳, 谭晶, 张政和, 高晓东, 于景超, 程礼盛, 杨卫民. 微纳层叠聚丙烯腈凝胶流动特性的数值模拟研究[J]. 中国塑料, 2021, 35(7): 74-79. |
[11] | 王瑞喆, 柳和生, 黄兴元, 余忠, 江诗雨, 刘同科. 不同进气角度对片材气辅挤出成型的影响[J]. 中国塑料, 2021, 35(7): 80-86. |
[12] | 周国发, 张馨予, 傅彬益. 模内微装配成型运动副界面损伤变形模拟分析[J]. 中国塑料, 2021, 35(6): 60-67. |
[13] | 卢京, 王伟. 低密度聚乙烯熔体毛细管挤出的数值模拟[J]. 中国塑料, 2021, 35(5): 79-85. |
[14] | 孙琦伟, 陈宇宏, 董书源, 郎建林, 周晓伟, 张云. PMMA/PC复合平板叠层注射压缩成型翘曲变形计算模拟[J]. 中国塑料, 2021, 35(4): 53-59. |
[15] | 董志家, 王小新, 管航, 厉邵. 基于Abaqus的医用塑料止血夹结构仿真分析及优化设计[J]. 中国塑料, 2021, 35(4): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||