
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (10): 178-189.DOI: 10.19491/j.issn.1001-9278.2022.10.024
收稿日期:
2022-05-27
出版日期:
2022-10-26
发布日期:
2022-10-27
通讯作者:
尹洪峰(1965—),男,教授,主要从事耐火材料、陶瓷基复合材料、功能复合材料以及固体废弃物综合利用等的研究,yinhongfeng@xauat.edu.cn
HU Wanxin, YIN Hongfeng(), YUAN Hudie, TANG Yun, REN Xiaohu
Received:
2022-05-27
Online:
2022-10-26
Published:
2022-10-27
Contact:
YIN Hongfeng
E-mail:yinhongfeng@xauat.edu.cn
摘要:
简述了吸波材料的电磁屏蔽机制、吸波剂的分类和损耗机制以及微波波段的划分与应用,并从材料的选择、结构的设计以及获得的吸波效果等方面对目前纤维增强树脂基吸波复合材料的研究进行了对比总结,重点阐述了单层结构、多层结构、多层夹心结构以及频率选择表面的主要特点和研究现状。最后提出了纤维增强树脂基吸波复合材料目前存在的问题,并对今后的发展进行了展望。
中图分类号:
胡婉欣, 尹洪峰, 袁蝴蝶, 汤云, 任小虎. 纤维增强树脂基吸波复合材料的研究进展[J]. 中国塑料, 2022, 36(10): 178-189.
HU Wanxin, YIN Hongfeng, YUAN Hudie, TANG Yun, REN Xiaohu. Research progress in fiber⁃reinforced⁃resin matrix microwave absorbing composites[J]. China Plastics, 2022, 36(10): 178-189.
名称 | 范围 | 应用 |
---|---|---|
超高频 | 300 MHz~1 GHz | 移动通信、搜索雷达 |
L波段 | 1~2 GHz | 远程对空警戒雷达、空中交通管制雷达、卫星导航系统、搜索跟踪雷达 |
S波段 | 2~4 GHz | 机场终端监视雷达、中距离警戒雷达、跟踪雷达、卫星通信、气象雷达 |
C波段 | 4~8 GHz | 手持战场监视、导弹控制、地面监视雷达、跟踪雷达、卫星电视广播和小型卫星地面站、气象雷达 |
X波段 | 8~12 GHz | 短距离火控雷达、成像雷达、警用测速雷达 |
Ku波段 | 12~18 GHz | 卫星通信和高分辨的测量 |
K波段 | 18~27 GHz | 卫星通信和高分辨的测量 |
Ka波段 | 27~40 GHz | 卫星通信和高分辨的测量 |
名称 | 范围 | 应用 |
---|---|---|
超高频 | 300 MHz~1 GHz | 移动通信、搜索雷达 |
L波段 | 1~2 GHz | 远程对空警戒雷达、空中交通管制雷达、卫星导航系统、搜索跟踪雷达 |
S波段 | 2~4 GHz | 机场终端监视雷达、中距离警戒雷达、跟踪雷达、卫星通信、气象雷达 |
C波段 | 4~8 GHz | 手持战场监视、导弹控制、地面监视雷达、跟踪雷达、卫星电视广播和小型卫星地面站、气象雷达 |
X波段 | 8~12 GHz | 短距离火控雷达、成像雷达、警用测速雷达 |
Ku波段 | 12~18 GHz | 卫星通信和高分辨的测量 |
K波段 | 18~27 GHz | 卫星通信和高分辨的测量 |
Ka波段 | 27~40 GHz | 卫星通信和高分辨的测量 |
材料 | 测试频率范围/GHz | 反射损耗(RL)/dB | 带宽(RL≤-10 dB)/GHz | 结构 | 文献 |
---|---|---|---|---|---|
石墨/GF/树脂 | 12.4~18 | -16.8 | 3 | 单层结构 | [ |
CB/GF/EP | 8.2~12.4 | -21 | 3.6 | 单层结构 | [ |
MWCNT/GF/EP | 12~18 | -29.2 | 4.91 | 单层结构 | [ |
CIP/CNT/PVA | 2~18 | -50 | 6.3 | 单层结构 | [ |
FeCuNbSiB/GF/EP | 2~18 | -30.5 | 14.8 | 单层结构 | [ |
CB/SiO2f/PI | 8~18 | -46.18 | 3.95 | 双层结构 | [ |
MWCNT/Fe3O4 NPs/GF/EP | 8.2~12.4 | -45.7 | X波段 | 双层结构 | [ |
ACFFS/GF/CF/EP | 2~18 | -38.54 | 11.33 | 三层结构 | [ |
MWCNT/GF/EP | 8.2~12.4 | -61.9 | X波段 | 多层结构 | [ |
MWCNT/GF/EP | 2~18 | -36 | 13 | 蜂窝芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~40 | -46 | 18.37 | 蜂窝芯结构 | [ |
GFRP/NCF | 4~18 | -24 | 11 | 泡沫芯结构 | [ |
GF/CF/PVC/EP | 2~18 | -18 | 16 | 泡沫/FSS结构 | [ |
SEBS/CB/石墨 | 1~18 | -38 | 15.69 | 波纹芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~30 | -34 | 16.31 | 晶格芯结构 | [ |
RGO/GF/EP | 8~18 | -32 | X~Ku波段 | FSS | [ |
碳材料/ABS | 2~18 | - | 12.7 | 金字塔结构 | [ |
材料 | 测试频率范围/GHz | 反射损耗(RL)/dB | 带宽(RL≤-10 dB)/GHz | 结构 | 文献 |
---|---|---|---|---|---|
石墨/GF/树脂 | 12.4~18 | -16.8 | 3 | 单层结构 | [ |
CB/GF/EP | 8.2~12.4 | -21 | 3.6 | 单层结构 | [ |
MWCNT/GF/EP | 12~18 | -29.2 | 4.91 | 单层结构 | [ |
CIP/CNT/PVA | 2~18 | -50 | 6.3 | 单层结构 | [ |
FeCuNbSiB/GF/EP | 2~18 | -30.5 | 14.8 | 单层结构 | [ |
CB/SiO2f/PI | 8~18 | -46.18 | 3.95 | 双层结构 | [ |
MWCNT/Fe3O4 NPs/GF/EP | 8.2~12.4 | -45.7 | X波段 | 双层结构 | [ |
ACFFS/GF/CF/EP | 2~18 | -38.54 | 11.33 | 三层结构 | [ |
MWCNT/GF/EP | 8.2~12.4 | -61.9 | X波段 | 多层结构 | [ |
MWCNT/GF/EP | 2~18 | -36 | 13 | 蜂窝芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~40 | -46 | 18.37 | 蜂窝芯结构 | [ |
GFRP/NCF | 4~18 | -24 | 11 | 泡沫芯结构 | [ |
GF/CF/PVC/EP | 2~18 | -18 | 16 | 泡沫/FSS结构 | [ |
SEBS/CB/石墨 | 1~18 | -38 | 15.69 | 波纹芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~30 | -34 | 16.31 | 晶格芯结构 | [ |
RGO/GF/EP | 8~18 | -32 | X~Ku波段 | FSS | [ |
碳材料/ABS | 2~18 | - | 12.7 | 金字塔结构 | [ |
结构类型 | 优点 | 缺点 |
---|---|---|
单层结构 | 制备简单、可调节吸收频率 | 提升空间小 |
多层结构 | 制备简单、性能优异 | 提升空间较小 |
多层夹心结构 | 性能优异、可调节性高 | 制备复杂 |
FSS | 制备简单、性能优异、可调节性高 | 力学性能差 |
塔型结构 | 多角度吸收 | 空间占比大,制备方法局限 |
结构类型 | 优点 | 缺点 |
---|---|---|
单层结构 | 制备简单、可调节吸收频率 | 提升空间小 |
多层结构 | 制备简单、性能优异 | 提升空间较小 |
多层夹心结构 | 性能优异、可调节性高 | 制备复杂 |
FSS | 制备简单、性能优异、可调节性高 | 力学性能差 |
塔型结构 | 多角度吸收 | 空间占比大,制备方法局限 |
1 | Liu Heguang, Wu Shaoqing, You Caiyin, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding [J]. Carbon, 2021, 172: 569⁃96. |
2 | Muhammed Kallumottakkal, Hussein Mousa I., Iqbal Muhammad Z. Recent progress of 2D nanomaterials for application on microwave absorption: a comprehensive study [J]. Frontiers in Materials, 2021, 8: 1⁃19. |
3 | Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Adv Sci (Weinh), 2019, 6(8): 1801057. |
4 | Athira Raveendran, Mailadil Thomas Sebastian, Sujith Raman. Applications of microwave materials: a review [J]. Journal of Electronic Materials, 2019, 48(5): 2 601⁃2 634. |
5 | 张明伟, 曲冠达, 庞梦瑶. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展 [J]. 材料导报, 2021, 35(Z1): 62⁃70. |
ZHANG M W, QU G D, PANG M Y, et al. Research progress of electromagnetic shielding mechanism and coated/structural absorbing composite materials[J]. Mterials Reports, 2021, 35(Z1):62⁃70. | |
6 | Vildan Özkan, Ahmet Yapici, Muharrem Karaaslan, et al. Electromagnetic scattering properties of MWCNTs/graphene doped epoxy layered with PVC nanofiber/E⁃glass composites [J]. Journal of Electronic Materials, 2020, 49(3): 2 249⁃2 256. |
7 | D M Charles Andrew, Rider Andrew N, Brown Sonya A,et al. Multifunctional magneto⁃polymer matrix composites for electromagnetic interference suppression, sensors and actuators [J]. Progress in Materials Science, 2021, 115: 100705. |
8 | Laís Vasconcelos Da Silva, Sérgio Henrique Pezzin, Mirabel Cerqueira Rezende, et al. Glass fiber/carbon nanotubes/epoxy three⁃component composites as radar absorbing materials [J]. Polymer Composites, 2016, 37(8): 2 277⁃ 284. |
9 | Ilbeom Choi, Lee Dongyoung, Dai Gil Lee. Radar absorbing composite structures dispersed with nano⁃conductive particles [J]. Composite Structures, 2015, 122: 23⁃30. |
10 | Shan Liu, Qin Shuhao, Yue Jiang, et al. Lightweight high⁃performance carbon⁃polymer nanocomposites for electromagnetic interference shielding [J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106376. |
11 | Kamila Kunrath, Eduardo Fischer Kerche, Mirabel Cerqueira Rezende, et al. Mechanical, electrical, and electromagnetic properties of hybrid graphene/glass fiber/epoxy composite [J]. Polymers and Polymer Composites, 2019, 27(5): 262⁃267. |
12 | Chinedum Ogonna Mgbemena, Li Danning, Lin Meng⁃Fang, et al. Accelerated microwave curing of fibre⁃reinforced thermoset polymer composites for structural applications: A review of scientific challenges [J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 88⁃103. |
13 | Shuang Zhang, Zhai Yinghao, Yong Zhang. Microwave⁃absorbing performance and mechanical properties of poly(vinyl chloride)/acrylonitrile⁃butadiene rubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide [J]. Journal of Applied Polymer Science, 2013, 130(1): 345⁃51. |
14 | Hua Qiu, Xian Luo, Jin Wang, et al. Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave⁃absorbing material[J]. Journal of Electronic Materials, 2019, 48(7): 4 400⁃4 408. |
15 | Wu Nannan, Xu Dongmei, Zhou Wang, et al. Achieving superior electromagnetic wave absorbers through the novel metal⁃organic frameworks derived magnetic porous carbon nanorods [J]. Carbon, 2019, 145: 433⁃444. |
16 | Wei Chen, Zheng Xiangnan, He Xingyang, et al. Achieving full effective microwave absorption in X band by double⁃layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs [J]. Polymer Testing, 2020, 86: 106448. |
17 | 李泽斌, 王海露, 袁承勋. 等离子体复合雷达吸波材料的电磁特性 [J]. 电波科学学报, 2018, 33(6): 695⁃700. |
LI Z B, WANG H L, YUAN C X, et al. Electronmagnetic characteristics of plasma combining radar absorbing material [J]. Chinese Journal of Radio Science, 2018, 33(6):695⁃700. | |
18 | Xiang Li, Yu Lujun, Yu Laiming, et al. Chiral polyaniline with superhelical structures for enhancement in microwave absorption [J]. Chemical Engineering Journal, 2018, 352: 745⁃55. |
19 | Sun Genban, Hong Wu, Liao Qingliang, et al. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene [J]. Nano Research, 2018, 11(5): 2 689⁃2 704. |
20 | Sajid Ur Rehman, Jian Liu, Rida Ahmed, et al. Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties [J]. Journal of Saudi Chemical Society, 2019, 23(4): 385⁃391. |
21 | 胡 睿, 杨伟涛, 石先锐. 涂覆型电磁吸波复合材料的研究进展 [J]. 中国胶粘剂, 2018, 27(10): 56⁃60. |
HU R, YANG W T, SHI X R, et al. Research progress of coated electromagnetic wave absorbing composite [J]. China Adhesives, 2018, 27(10): 56⁃60 | |
22 | Michael Green, Chen Xiaobo. Recent progress of nanomaterials for microwave absorption [J]. Journal of Materiomics, 2019, 5(4): 503⁃41. |
23 | Jing Yan, Ying Huang, Chao Wei, et al. Covalently bonded polyaniline/graphene composites as high⁃performance electromagnetic (EM) wave absorption materials [J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 121⁃128. |
24 | Wan Zhendong, Ma Huiling, Hou Shikun, et al. Fabrication of hollow microhemisphere⁃like polypyrrole and carbon dielectric materials by sol⁃gel template method for enhanced microwave absorption [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10 991⁃11 003. |
25 | Gopal Kulkarni, Priyanka Kandesar, Ninad Velhal, et al. Exceptional electromagnetic interference shielding and microwave absorption properties of room temperature synthesized polythiophene thin films with double negative characteristics (DNG) in the Ku⁃band region [J]. Chemical Engineering Journal, 2019, 355: 196⁃207. |
26 | 李天天, 夏 龙, 黄小萧. 介电损耗型微波吸收材料的研究进展 [J]. 材料工程, 2021, 49(6): 1⁃13. |
LI T T, XIA L, HUANG X X, et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49(6):1⁃13. | |
27 | Jae⁃Hun Choi, Young⁃Woo Nam, Min⁃Su Jang, et al. Characteristics of silicon carbide fiber⁃reinforced composite for microwave absorbing structures [J]. Composite Structures, 2018, 202: 290⁃295. |
28 | Jing Ran, Guo Mingjie, Li Zhong, et al. In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: A lightweight electromagnetic absorber [J]. Journal of Alloys and Compounds, 2019, 773: 423⁃431. |
29 | Qi Jia, Wang Wenzhi, Jing Zhao, et al. Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet⁃like composites for enhanced microwave absorption performance [J]. Journal of Alloys and Compounds, 2017, 710: 717⁃724. |
30 | 王彩霞, 刘元军. 磁损耗型吸波材料的发展现状 [J]. 丝绸, 2021, 58(2): 27⁃34. |
WANG C X, LIU Y J. Developments status of magnetic loss wave⁃absorbing materials[J]. Journal of Silk, 2021, 58(2):27⁃34. | |
31 | Heijun Jeong, Hai Le Dinh, Daecheon Lim, et al. Reconfigurable metasurfaces for frequency selective absorption [J]. Advanced Optical Materials, 2020, 8(13): 1902182. |
32 | Sowmya Sankaran, Kalim Deshmukh, AhamedM Basheer, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review [J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 49⁃71. |
33 | Jayalakshmi C G, Inamdar A, Anand A, et al. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts [J]. Journal of Applied Polymer Science, 2019, 136(47241):1⁃21. |
34 | 邓京兰. 结构吸波复合材料的吸波性能 [J]. 材料科学与工程学报, 2010, 28(2): 1673⁃2812(010)02⁃0161⁃04. |
DENG J L. Microwave absorbing properties of a structural material[J]. Journal of Materials Science and Engineering, 2010, 28(2): 1 673⁃2 812. | |
35 | Jae⁃Hwan Shin, Hong⁃Kyu Jang, Won⁃Ho Choi, et al. Design and verification of a single slab RAS through mass production of glass/MWNT added epoxy composite prepreg [J]. Journal of Applied Polymer Science, 2015, 132(22): 42019. |
36 | Peng Xuewei, Qi Zhang, Yong Xie. Preparation and wave absorption of carbon nanotube/polyvinyl alcohol/carbonyl iron powder composites [J]. Carbon Techniques, 2020, 2(39): 39⁃43. |
37 | Zheng Xia⁃Lian, Zhu Zheng⁃Hou, Li Xiao⁃Min. The absorbing properties of Fe73.5Cu1Nb3Si13.5B9 amorphous powder/S⁃glass fiber⁃reinforced epoxy composite panels [J]. Rare Metals, 2013, 32(3): 294⁃298. |
38 | Zhou Liu, Wang Yuankang, Li Kewei, et al. Broadband microwave absorber composed of sandwich structure with a lossless medium as the intermediate layer [J]. Journal of Magnetism and Magnetic Materials, 2022, 548: 168963. |
39 | Fabrizio Marra, Julian Lecini, Alessio Tamburrano, et al. Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass⁃Fiber/Epoxy Composite [J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(2): 590⁃601. |
40 | 张雪霏, 周金堂, 姚正军. CIP/GF/CF/EP吸波复合材料的制备及力学性能 [J]. 材料工程, 2019, 47(10): 141⁃147. |
ZHANG X F, ZHOU J T, YAO Z J,et al. Preparation and mechanical property of CIP/GF/CF/EP absorbing composites[J]. Journal of materials engineering, 2019, 47(10):141⁃147. | |
41 | Dong Jie, Zhou Wancheng, Yuchang Qing, et al. Dielectric and microwave absorption properties of CB doped SiO2f/PI double⁃layer composites [J]. Ceramics International, 2018, 44(12): 14 007⁃14 012. |
42 | 姚 斌, 夏少旭, 欧湘慧, 等. GF / CF / ACFFS 多层复合材料的吸波性能研究 [J]. 复合材料, 2016, 4: 26⁃30. |
YAO B, XIA S X, OU X H, et al. Microwave absorption property of GF/CE/ACFFS multilayer composites [J]. Composite Materials, 2016, 4: 26⁃30. | |
43 | Se⁃Won Eun, Won⁃Ho Choi, Hong⁃Kyu Jang, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures [J]. Composites Science and Technology, 2015, 116: 18⁃25. |
44 | Gao Xiaoyan, Jiang Li, Yuan Gao, et al. Microwave absorbing properties of alternating multilayer composites consisting of poly (vinyl chloride) and multi⁃walled carbon nanotube filled poly (vinyl chloride) layers [J]. Composites Science and Technology, 2016, 130: 10⁃19. |
45 | Liu Y, Lu Q, Wang J, et al. A flexible sandwich structure carbon fiber cloth with resin coating composite improves electromagnetic wave absorption performance at low frequency[J]. Polymers (Basel), 2022, 14(2): 14 233. |
46 | Li S, Huang H, Wu S, et al. Study on microwave absorption performance enhancement of metamaterial/honeycomb sandwich composites in the low frequency band [J]. Polymers (Basel), 2022, 14(7): 141 424. |
47 | Pang Huifang, Duan Yuping, Dai Xuhao, et al. The electromagnetic response of composition⁃regulated honeycomb structural materials used for broadband microwave absorption [J]. Journal of Materials Science & Technology, 2021, 88: 203⁃214. |
48 | Wen Zheng, Li Yiru, Xie Zhiyuan, et al. X⁃band full absorbing multi⁃layer foam with lightweight and flexible performance [J]. Composites Part B: Engineering, 2022, 231: 109587. |
49 | Bollen P, Quievy N, Detrembleur C, et al. Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb [J]. Materials & Design, 2016, 89: 323⁃334. |
50 | Won⁃Ho Choi, Kim Chun⁃Gon. Broadband microwave⁃absorbing honeycomb structure with novel design concept [J]. Composites Part B: Engineering, 2015, 83: 14⁃20. |
51 | Huang Yixing, Dong Wu, Chen Mingji, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption [J]. Carbon, 2021, 177: 79⁃89. |
52 | Byeong⁃Su Kwak, Gi⁃Won Jeong, Won⁃Ho Choi, et al. Microwave⁃absorbing honeycomb core structure with nickel⁃coated glass fabric prepared by electroless plating [J]. Composite Structures, 2021, 256: 1⁃9. |
53 | Won⁃Ho Choi, Byeong⁃Su Kwak, Jin⁃Hwe Kweon, et al. Radar⁃absorbing foam⁃based sandwich composite with electroless nickel⁃plated glass fabric [J]. Composite Structures, 2020, 243: 1⁃7. |
54 | Choi W H, Jang H K, Shin J H, et al. Wideband radar absorbing structure with low density material and load‐bearing MWCNT added composite material [J]. Electronics Letters, 2013, 49(9): 620⁃622. |
55 | Wang Changxian, Chen Mingji, Lei Hongshuai, et al. Frequency⁃selective⁃surface based sandwich structure for both effective loadbearing and customizable microwave absorption [J]. Composite Structures, 2020, 235: 1⁃8. |
56 | Wei Jiang, Hua Ma, Yan Leilei, et al. A microwave absorption/transmission integrated sandwich structure based on composite corrugation channel: Design, fabrication and experiment [J]. Composite Structures, 2019, 229: 1⁃9. |
57 | Huang Haoming, Wen Wang, Cao Taishan, et al. Broadband radar absorbing performance of corrugated structure [J]. Composite Structures, 2020, 253: 1⁃7. |
58 | Zheng Qing, Fan Hualin, Liu Jun, et al. Hierarchical lattice composites for electromagnetic and mechanical energy absorptions [J]. Composites Part B: Engineering, 2013, 53: 152⁃158. |
59 | Huang Yixing, Yuan Xujin, Chen Mingji, et al. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing [J]. Carbon, 2019, 144: 449⁃456. |
60 | Jaeho Choi, Jung Hee⁃Tae. A new triple⁃layered composite for high⁃performance broadband microwave absorption [J]. Composite Structures, 2015, 122: 166⁃171. |
61 | Rojas J A, Ribeiro B, Rezende M C. Influence of serrated edge and rectangular strips of MWCNT buckypaper on the electromagnetic properties of glass fiber/epoxy resin composites [J]. Carbon, 2020, 160: 317⁃327. |
62 | Wang Xi⁃Xi, Sun Chao⁃Ming, Wen Fu⁃Bao, et al. Strong mechanics and broadened microwave absorption of graphene⁃based sandwich structures and surface⁃patterned structures [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9 683⁃9 696. |
63 | Zeng Qu, Hao Jingxian, Jing Huihui, et al. An ultra⁃thin ultra⁃broadband microwave absorber for radar stealth [J]. Advanced Composites and Hybrid Materials, 2022,5(3):1 778⁃1 785. |
64 | Yi Liu, Jian Yang, Xu Jie, et al. Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/ acrylic acid resin composite coatings with FSS incorporation [J]. Journal of Alloys and Compounds, 2022, 14(233): 1⁃12. |
65 | Won⁃Ho Choi, Byeong⁃Su Kwak, Jin⁃Hwe Kweon, et al. Microwave absorbing structure using periodic pattern coated fabric [J]. Composite Structures, 2020, 238(111953): 1⁃6. |
66 | Wang Changxian, Lei Hongshuai, Huang Yixing, et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure [J]. Composite Structures, 2018, 195: 297⁃307. |
67 | Neeraj Gill, Smitha Puthucheri, Dharmendra Singh, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz [J]. Journal of Materials Science: Materials in Electronics, 2016, 28(2): 1 259⁃1 270. |
68 | Ye F, Song C, Zhou Q, et al. Broadband microwave absorbing composites with a multi⁃scale layered structure based on reduced graphene oxide film as the frequency selective surface[J]. Materials, 2018, 11(9): 1 771. |
69 | Wang Changxian, Chen Mingji, Lei Hongshuai, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure [J]. Composites Part B: Engineering, 2017, 123: 19⁃27. |
70 | Li Weiwei, Chen Mingji, Zeng Zhihui, et al. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization [J]. Composites Science and Technology, 2017, 145: 10⁃4. |
71 | Silveira Daniel C, A S Gomes Newton, Rezende Mirabel C,et al. Microwave absorbing properties of glass fiber/epoxy resin composites tailored with frequency selective surface based on nonwoven of carbon fibers metalized with nickel [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13 095⁃13 103. |
72 | Chen Xiqiao, Zhuang Wu, Zhang Zilong, et al. Ultra⁃broadband and wide⁃angle absorption based on 3D⁃printed pyramid [J]. Optics & Laser Technology, 2020, 124: 105972. |
73 | Ting Liu, Xu Yonggang, Zheng Dianliang, et al. Fabrication and absorbing property of the tower⁃like absorber based on 3D printing process [J]. Physica B: Condensed Matter, 2019, 553: 88⁃95. |
74 | 黄 科, 冯 斌, 邓京兰. 结构型吸波复合材料研究进展 [J]. 高科技纤维与应用, 2010, 35(6): 54⁃58. |
HUANG K, FENG B, DENG J L. Research progress of structural radar⁃absorbing composite materials [J]. Hi⁃Tech Fiber & Application, 2010, 35(6): 54⁃58. | |
75 | 张 磊, 李永清, 王静南, 等. 雷达隐身复合材料研究进展及在舰船上的应用 [J]. 船舰科学技术, 2020, 42(2): 144⁃149. |
ZHANG L, LI Y Q, WANG J N, et. al . The research and application of radar wave stealth composites for warship[J]. Ship Science and Technology, 2020, 42(2): 144⁃149. |
[1] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[2] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[3] | 高永红, 彭梦蜜, 金清平. 温度对玻璃纤维增强聚合物筋与混凝土黏结性能影响试验研究[J]. 中国塑料, 2022, 36(9): 16-23. |
[4] | 董玥, 董霄, 朱德兆, 杨延翔, 罗琛, 李阳, 李锦山. 聚酰亚胺发展概况与应用展望[J]. 中国塑料, 2022, 36(9): 85-95. |
[5] | 马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121. |
[6] | 李卓琳, 牟文英, 丁玉梅. 医用防辐射服研究现状及发展趋势[J]. 中国塑料, 2022, 36(9): 193-201. |
[7] | 焦志伟, 王克琛, 张杨, 杨卫民. 基于碳纳米涂层沉积滑石粉与炭黑协同填充PVC/ABS复合材料的性能研究[J]. 中国塑料, 2022, 36(8): 10-15. |
[8] | 余大荣, 辛勇. 超高分子量聚乙烯改性研究进展[J]. 中国塑料, 2022, 36(8): 135-145. |
[9] | 喻九阳, 王众浩, 陈琦, 夏亚忠. 基于阀体制造的先进树脂基复合材料性能研究[J]. 中国塑料, 2022, 36(8): 16-22. |
[10] | 张陶忠, 陈晓龙, 郝晓宇, 于福家. 滑石、CaCO3、BaSO4填充PP复合材料力学性能及界面相互作用对比[J]. 中国塑料, 2022, 36(8): 36-41. |
[11] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[12] | 杜青, 何祎, 余坦竟, 蓝艳姣, 赵彦芝, 周菊英. 取向PAN/MWCNTs与热塑性聚烯烃复合材料的制备及表征[J]. 中国塑料, 2022, 36(8): 49-55. |
[13] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[14] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[15] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||