
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 95-104.DOI: 10.19491/j.issn.1001-9278.2024.02.015
张小娟1,2, 杨可欣1, 郭嘉乾1, 雷阳1, 方长青1()
收稿日期:
2023-07-23
出版日期:
2024-02-26
发布日期:
2024-02-03
通讯作者:
方长青(1978—),男,教授,从事包装材料及其废弃物资源化利用相关研究,fcqxaut@163.com基金资助:
ZHANG Xiaojuan1,2, YANG Kexin1, GUO Jiaqian1, LEI Yang1, FANG Changqing1()
Received:
2023-07-23
Online:
2024-02-26
Published:
2024-02-03
Contact:
FANG Changqing
E-mail:fcqxaut@163.com
摘要:
简要介绍气调包装膜的透气机制及改性聚醚醚酮(PEEK)的基本结构和特性,详细综述了近年来可用于提高改性PEEK基气调包装膜热力学稳定性、透气透湿性和抗菌等特性所涉及的物理、化学改性技术及其改性机理,最后展望了改性PEEK在气调包装领域的未来研究方向,并提出了其可能存在的问题及挑战。
中图分类号:
张小娟, 杨可欣, 郭嘉乾, 雷阳, 方长青. 改性聚醚醚酮在气调包装膜领域的研究进展[J]. 中国塑料, 2024, 38(2): 95-104.
ZHANG Xiaojuan, YANG Kexin, GUO Jiaqian, LEI Yang, FANG Changqing. Research progress in modification of poly(ether ether ketone) for modified atmosphere packaging membrane[J]. China Plastics, 2024, 38(2): 95-104.
填料种类 | 优缺点 | PEEK基膜的性能改善 | 参考文献 |
---|---|---|---|
纳米粒子 | 成本低、稳定性高、耐磨性好,但表面能过大易出现团聚现象 | “阻塞效应”延长膜中水分子通过渠道,降低膜的透湿性,利于提升膜的力学稳定性 | [ |
CNT | 密度低、纵横比高、弹性好,但CNT间强的相互作用会导致其在基质膜中团聚 | 作增强剂支撑聚合物,降低膜的溶胀度,提升拉伸强度 | [ |
石墨烯及其氧化物 | 比表面积大、强柔韧性、高热导率,然而纯石墨烯价格高昂,且使用时需强化其表面的化学特性以优化不稳定问题 | 不同改性基团对CO2的特异性反应促进气体分离比 | [ |
沸石及金属有机配体的掺杂 | 化学结构可调、比表面积大、孔分布均匀,成本低、加工方便、易于大规模生产,然而传统的水热合成法具有反应时间长和溶剂有毒等劣势 | 氢键的形成会阻碍膜的过度吸水溶胀,且增强力学强度和良好的化学稳定性 | [ |
纤维材料 | 无毒性、轻质、力学性能好、价格低廉,然而一维纤维韧性较差,且 受范德华力影响易在复合膜内团聚 | 提升PEEK基复合膜的热力学稳定性 | [ |
填料种类 | 优缺点 | PEEK基膜的性能改善 | 参考文献 |
---|---|---|---|
纳米粒子 | 成本低、稳定性高、耐磨性好,但表面能过大易出现团聚现象 | “阻塞效应”延长膜中水分子通过渠道,降低膜的透湿性,利于提升膜的力学稳定性 | [ |
CNT | 密度低、纵横比高、弹性好,但CNT间强的相互作用会导致其在基质膜中团聚 | 作增强剂支撑聚合物,降低膜的溶胀度,提升拉伸强度 | [ |
石墨烯及其氧化物 | 比表面积大、强柔韧性、高热导率,然而纯石墨烯价格高昂,且使用时需强化其表面的化学特性以优化不稳定问题 | 不同改性基团对CO2的特异性反应促进气体分离比 | [ |
沸石及金属有机配体的掺杂 | 化学结构可调、比表面积大、孔分布均匀,成本低、加工方便、易于大规模生产,然而传统的水热合成法具有反应时间长和溶剂有毒等劣势 | 氢键的形成会阻碍膜的过度吸水溶胀,且增强力学强度和良好的化学稳定性 | [ |
纤维材料 | 无毒性、轻质、力学性能好、价格低廉,然而一维纤维韧性较差,且 受范德华力影响易在复合膜内团聚 | 提升PEEK基复合膜的热力学稳定性 | [ |
膜样品名 | 拉伸强度/MPa | 弹性模量/MPa | 断裂伸长率/% |
---|---|---|---|
SPEEK⁃60 | 64.5±4.4 | 1 734±29 | 131±9 |
TA⁃10 | 66.9±2.9 | 2 015±88 | 94±8 |
TA⁃20 | 78.8±4.8 | 2 168±47 | 68±5 |
TA⁃30 | 83.0±4.2 | 2 229±40 | 21±2 |
IM⁃8 | 65.0±4.0 | 1 986±30 | 119±8 |
IM⁃15 | 74.3±3.6 | 203±19 | 99±6 |
IM⁃30 | 82.1±2.1 | 2 333±42 | 56±4 |
膜样品名 | 拉伸强度/MPa | 弹性模量/MPa | 断裂伸长率/% |
---|---|---|---|
SPEEK⁃60 | 64.5±4.4 | 1 734±29 | 131±9 |
TA⁃10 | 66.9±2.9 | 2 015±88 | 94±8 |
TA⁃20 | 78.8±4.8 | 2 168±47 | 68±5 |
TA⁃30 | 83.0±4.2 | 2 229±40 | 21±2 |
IM⁃8 | 65.0±4.0 | 1 986±30 | 119±8 |
IM⁃15 | 74.3±3.6 | 203±19 | 99±6 |
IM⁃30 | 82.1±2.1 | 2 333±42 | 56±4 |
1 | Mahajan Pramod V, Lee Dong Sun. Modified atmosphere and moisture condensation in packaged fresh produce: scientific efforts and commercial success[J]. Postharvest Biology and Technology,2023,198:112235. |
2 | Xu Yan, Chen Luyao, Zhang Yiqin,et al. Antimicrobial and controlled release properties of nanocomposite film containing thymol and carvacrol loaded UiO-66⁃NH2 for active food packaging[J].Food Chemistry,2023,404:134427. |
3 | 刘欢,董丽,冯叙桥,等. 不同贮藏方式对果蔬营养品质影响的研究进展[J]. 食品工业科技,2016,37(20):360⁃365. |
LIU H, DONG L, FENG X Q,et al. Advances on research of different storage methods on nutritional quality of fruits and vegetables[J]. Science and Technology of Food Industry,2016,37(20):360⁃365. | |
4 | 张长峰. 气调包装条件下果蔬呼吸强度模型的研究进展[J]. 农业工程学报,2004,20(3):281⁃285. |
ZHANG C F. Research advances on respiration models in modified atmosphere packaging of fruits and vegetables[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2004,20(3):281⁃285. | |
5 | 郭风军,张长峰,姜沛宏,等. 果蔬保鲜包装技术及其研究进展[J]. 保鲜与加工,2019,19(6):197⁃203,210. |
GUO F J, ZHANG C F, JIANG P H,et al. Preservation packaging technology of fruits and vegetables and research progress[J]. Storage and Process,2019,19(6):197⁃203,210. | |
6 | 隋思瑶,王毓宁,马佳佳,等. 活性包装技术在果蔬保鲜上的应用研究进展[J]. 包装工程,2017,38(9):1⁃6. |
SUI S Y, WANG Y N, MA J J,et al. Research advances of application of active packaging technology in preservation of fruits and vegetables[J]. Packaging Engineering,2017,38(9):1⁃6. | |
7 | 王静. 果蔬采后保鲜包装技术的研究进展[J]. 保鲜与加工,2022,22(6):91⁃96. |
WANG J. Research progress of fresh⁃keeping packaging technology for post⁃harvest fruits and vegetables[J]. Storage and Process,2022,22(6):91⁃96. | |
8 | 董浩. 改性氧化石墨烯/磺化聚醚醚酮平衡气调膜的制备及其保鲜果蔬的研究[D]. 广州:华南理工大学,2019. |
9 | 黄良,刘全祖,沈祖广,等. 果蔬气调保鲜技术的发展现状[J]. 农业与技术,2018,38(3):163⁃166. |
10 | 黄玉婷. 改性聚醚醚酮/聚氯乙烯气调膜的制备及红提葡萄保鲜效果的研究[D]. 广州:华南理工大学,2021. |
11 | Wu Yanhu, Li Dongli, Fu Yabo,et al. Independency of regulating RH and O2/CO2 concentration and its effect on the quality of strawberry at 25 ℃[J]. Journal of Food Process Engineering,2019,42(8):13292. |
12 | Lan Weijie, Zhang Rong, Saeed Ahmed,et al. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries[J]. LWT⁃Food Science & Technology,2019,113:108297. |
13 | Kim Dowan, Mijin Lim, Seo Jongchul. Preparation of polypropylene/octadecane composite films and their use in the packaging of cherry tomatoes[J]. Journal of Applied Polymer Science,2016,133(41/42):12. |
14 | Salvatore D′Aquino, Antonios Mistriotis, Demetrios Briassoulis,et al. Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20 ℃[J]. Postharvest Biology and Technology,2016,115:103⁃112. |
15 | Fagundes C, Moraes K, Pérez⁃Gago M B,et al. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes[J]. Postharvest Biology and Technology,2015,109:73⁃81. |
16 | Wang Limin, Hong Kai, Xu Ranran,et al. The alleviation of cold⁃stimulated flesh reddening in ‘friar’ plum fruit by the elevated CO2 with polyvinyl chloride (PVC) packaging[J]. Scientia Horticulturae,2021,281(1):109997. |
17 | 毕大鹏,李家政,潘明旺. 聚乙烯/硅橡胶共混膜的制备及其透气性能[J]. 材料科学与工程学报,2011,29(6):935⁃939. |
BI D P, LI J Z, PAN M W. Preparationand gas permeability of polyethylene/polydimethylsiloxane blend film[J]. Journal of Materials Science & Engineering,2011,29(6):935⁃939. | |
18 | 梁惜雯,顾思彤,姜爱丽,等. 自发气调在鲜切果蔬包装中的应用研究进展[J]. 包装工程,2020,41(15):8⁃13. |
LIANG X W, GU S T, JIANG A L,et al. Research progress in application of modified atmosphere packaging in fresh⁃cut fruits and vegetables[J]. Packaging Engineering,2020,41(15):8⁃13. | |
19 | 路洪艳,李莉,罗自生. 纳米TiO2改性低密度聚乙烯包装保持山核桃贮藏品质[J]. 农业工程学报,2017,33(3):288⁃293. |
LU H Y, LI L, LUO Z S. Nano⁃TiO2 modified low⁃density polyethylene packaging preserving storage quality of chinese hickory (carya cathayensis sarg.)[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(3):288⁃293. | |
20 | 孙江华,张敏. 聚醚醚酮薄膜的性能研究[J]. 中国塑料,2020,34(2):43⁃48. |
SUN J H, ZHANG M. Performance investigation on polyetheretherketone film[J]. China Plastics,2020,34(2):43⁃48. | |
21 | 卢国库,龚俊,高贵,等. 聚醚醚酮和纳米二氧化硅改性聚四氟乙烯复合材料的摩擦学性能[J]. 高分子材料科学与工程,2022,38(8):168⁃176. |
LU G K, GONG J, GAO G,et al. Tribological properties of polyetheretherketone and nano⁃SiO2 filled polytetrafluoroethylene composites[J]. Polymer Materials Science and Engineering,2022,38(8):168⁃176. | |
22 | 张宏伟,张俊,于非,等. 改性磺化聚醚醚酮用作直接甲醇燃料电池聚合物电解质膜[J]. 合成化学,2007,15(11):153⁃154. |
23 | 马欢欢,仇文豪,黄浩,等. 聚醚醚酮骨植入体生物改性研究进展[J]. 表面技术,2023,52(3):111⁃121. |
MA H H, QIU W H, HUANG H,et al. Research progress in biological modification of polyether⁃ether⁃ketone bone implants[J]. Surface Technology,2023,52(3):111⁃121. | |
24 | 谭宗尚,李军. 聚醚醚酮(PEEK)新材料性能及其在食品包装和饮料机械行业的应用研究[J]. 饮料工业,2014,17(2):39⁃42. |
TAN Z S, LI J. A study on performance of peek materials and use of them in food packaging and beverage machinery industries[J]. Beverage Industry,2014,17(2):39⁃42. | |
25 | Emily Buck, Li Hao, Marta Cerruti. Surface modification strategies to improve the osseointegration of poly (etheretherketone) and its composites[J]. Macromolecular Bioscience,2020,20(2):1900271. |
26 | 刘哲闻. 三维多孔复合聚醚醚酮支架的制备及骨修复性能研究[D]. 长春:吉林大学,2022. |
27 | 王娜. 聚多巴胺修饰磺化聚醚醚酮的制备及性能研究[D]. 长春:吉林大学,2019. |
28 | Kim Ae Rhan,Poudel Milan Babu, Chu Ji Young,et al. Advanced performance and ultra⁃high, long⁃term durability of acid⁃base blended membranes over 900 hours containing sulfonated peek and quaternized poly (arylene ether sulfone) in H2/O2 fuel cells[J]. Composites Part B: Engineering,2023,254:110558. |
29 | 王震,何家鹏,谌凯,等. 磺化聚醚醚酮/聚乙烯复合膜的制备及对生菜的贮藏保鲜[J]. 现代食品科技,2020,36(10):157⁃164. |
WANG Z, HE J P, CHEN K,et al. Preparation of SPEEK/PE composite membrane and application in lettuce preservation[J]. Modern Food Science and Technology,2020,36(10):157⁃164. | |
30 | 何家鹏,何其,董浩,等. 自发式气调共混膜的制备及性能分析[J]. 化工进展,2018,37(12):4 799⁃4 805. |
HE J P, HE Q, DONG H,et al. Preparation and properties of self⁃balancing blend membrane as plastic wrap packaging[J]. Chemical Industry and Engineering Progress,2018,37(12):4 799⁃4 805. | |
31 | Li Siqian, Dong Hao, Yang Xingfen,et al. A novel insight into green food preservation: design of equilibrium modified atmosphere packaging (EMAP) based on gas barrier (GB)⁃gas conductor (GC) blending materials[J]. Food Chemistry,2022,395:133560. |
32 | 何其. 基于磺化聚醚醚酮/聚偏氟乙烯的自平衡气调膜的制备及应用[D]. 广州:华南理工大学,2018. |
33 | 董同力嘎,张靳,胡健,等. 硅橡胶材料、生物可降解材料和微孔材料在果蔬气调保鲜中的应用与进展[J]. 内蒙古农业大学学报(自然科学版),2020,41(6):96⁃100. |
DONG T, ZHANG J, HU J,et al. Application and research progress of silicone rubber,biodegradable,and microporous materials in modified atomsphere packaging of fresh fruits and vegetables[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition),2020,41(6):96⁃100. | |
34 | 蒋佳男,李海登,李继兰,等. 可降解高透CO2透湿果蔬保鲜膜的研制与应用[J]. 食品工业,2019,40(11):138⁃140. |
JIANG J N, LI H D, LI J L,et al. Development and application of biodegradable films with degradable high CO2 moisture permeability[J]. The Food Industry,2019,40(11):138⁃140. | |
35 | 云雪艳. 高韧性、高选择透过性聚乳酸薄膜的制备及其对果蔬的气调保鲜效果[D]. 呼和浩特:内蒙古农业大学,2017. |
36 | He Qi, Xiao Kaijun. Quality of broccoli (Brassica oleracea L. var. italica) in modified atmosphere packaging made by gas barrier⁃gas promoter blending materials[J]. Postharvest Biology and Technology,2018,144:63⁃69. |
37 | He Qi, Xiao Xiaoyue, Wang Wenxia,et al. A novel gas conductor⁃gas barrier (GC⁃GB) blending membrane with adjustable gas separation capacity[J]. RSC Advances,2017,7(85):53 907⁃53 915. |
38 | 杨诗卉,于婉琦,周哲,等. 聚醚醚酮抗菌改性及相关机制的研究现状[J]. 现代口腔医学杂志,2020,34(3):176⁃180. |
39 | 朱林,陆娟,包志军,等. 聚醚醚酮(PEEK)的改性方法及其在骨缺损修复中的应用[J]. 塑料助剂,2022,(1):54⁃57. |
ZHU L, LU J, BAO Z J,et al. Modification of polyether ether ketone (PEEK) and its application in bone defect repair[J]. Plastics Additives,2022,(1):54⁃57. | |
40 | Wang Shengnan, Deng Yi, Yang Lei,et al. Enhanced antibacterial property and osteo⁃differentiation activity on plasma treated porous polyetheretherketone with hierarchical micro/nano⁃topography[J]. Journal of Biomaterials Science, Polymer Edition,2018,29(5):520⁃542. |
41 | Göknur Dönmez, Mert Gülcan, Hüseyin Deligöz. A comparative study on SPEEK⁃based composite membranes with various inorganic fillers using different preparation routes for DMFCs[J]. Polymer Engineering & Science,2023,63(6):1⁃11. |
42 | Deng Yi, Liu Xiaochen, Xu Anxiu,et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber⁃reinforced polyetheretherketone⁃nanohydroxyapatite composite[J]. International Journal of Nanomedicine,2015,10(1):1 425⁃1 447. |
43 | Chikumba F T, Tamer M, Akyalçın L,et al. The development of sulfonated polyether ether ketone (sPEEK) and titanium silicon oxide (TiSiO4) composite membranes for DMFC applications[J]. International Journal of Hydrogen Energy,2023,48(37):14 038⁃14 052. |
44 | Bragaglia M, Cherubini V, Nanni F. PEEK⁃TiO2 Composites with Enhanced UV Resistance[J]. Composites Science and Technology,2020,199:108365. |
45 | Girdhar Shinde Nitin,Mangesh Patel Dilip. Polymeric nanocomposite of PEEK and nickel incorporated ZnO: synthesis, charachterization and tribological behavior[J]. Materials Today: Proceedings,2022,56(6):3 727⁃3 733. |
46 | 张晓宇. 氨基功能化介孔氧化硅对SPEEK/IL复合膜性能的影响[D].吉林:延边大学,2019. |
47 | 黄素玲,逄显娟,岳世伟,等. 聚醚醚酮复合材料改性及其摩擦学性能与应用研究进展[J]. 化工新型材料,2022,50(4):1⁃5. |
HUANG S L, PANG X J, YUE S W,et al. Research progress on modification, tribological property and application of PEEK composite[J]. New Chemical Materials,2022,50(4):1⁃5. | |
48 | Nayak Jagdeep Kumar, Uday Shankar, Kundan Samal. Fabrication and development of SPEEK/PVdF⁃HFP/SiO2 proton exchange membrane for microbial fuel cell application[J]. Chemical Engineering Journal Advances,2023,14:100459. |
49 | 董波. 三维聚醚醚酮网络增强磺化聚醚醚酮膜材料的制备及性能[D]. 长春:吉林大学,2017. |
50 | Vidhyeswari D, Surendhar A, Bhuvaneshwari S. Enhanced performance of novel carbon nanotubes⁃sulfonated poly ether ether ketone (SPEEK) composite proton exchange membrane in MFC application[J]. Chemosphere,2022,293:133560. |
51 | Arya Tewatia, Justin Hendrix, Dong Zhizhong,et al. Characterization of melt⁃blended graphene⁃poly (ether ether ketone) nanocomposite[J]. Materials Science and Engineering: B,2017,216:41⁃49. |
52 | Hu Chenxi, Liu Tianhui, Nigel Neate,et al. Enhanced thermal and electrical properties by ag nanoparticles decorated GO⁃CNT nanostructures in PEEK composites[J]. Composites Science and Technology,2022,218:109201. |
53 | 高语珊,王明辉,杨雨东,等. 含可交联基团的磺化聚醚醚酮/改性石墨烯复合膜的制备及性能研究[J]. 东北师大学报(自然科学版),2021,53(1):99⁃104. |
GAO Y S, WANG M H, YANG Y D,et al. Preparation and property of sulfonated poly(ether ether ketone) containing crosslinkable group/modified graphene composite membranes[J]. Journal of Northeast Normal University(Natural Science Edition),2021,53(1):99⁃104. | |
54 | Cheng Yao, Dong Hao, Wu Yuanyue,et al. Preparation of an amidated graphene oxide/sulfonated poly ether ether ketone (AGO/SPEEK) modified atmosphere packaging for the storage of cherry tomatoes[J]. Foods,2021,10(3):552. |
55 | Gokulakrishnan S A, Vikas Kumar, Arthanareeswaran G,et al. Thermally stable nanoclay and functionalized graphene oxide integrated SPEEK nanocomposite membranes for direct methanol fuel cell application[J]. Fuel,2022,329:125407. |
56 | Wang Yonghong, Zhou Yi, Zhang Xinru,et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology,2021,275:119189. |
57 | Fu Jinyu, Ni Jing, Wang Jie,et al. Highly proton conductive and mechanically robust SPEEK composite membranes incorporated with hierarchical metal⁃organic framework/carbon nanotubes compound[J]. Journal of Materials Research and Technology,2023,22:2 660⁃2 672. |
58 | Da Trindade Letícia G, Borba Katiúscia M. N,Zanchet Letícia,et al. SPEEK⁃based proton exchange membranes modified with MOF⁃encapsulated ionic liquid[J]. Materials Chemistry and Physics,2019,236:121792. |
59 | Zhu Shu, Qian Ying, Hassan Elwathig A. M,et al. Enhanced interfacial interactions by PEEK⁃grafting and coupling of acylated CNT for GF/PEEK composites[J]. Composites Communications,2020,18:43⁃48. |
60 | Xu Nuo, Chen Shaohua, Li Yingze,et al. A hybrid 1D/2D coating strategy with MXene and CNT towards the interfacial reinforcement of carbon fiber/poly(ether ether ketone) composite[J]. Composites Part B: Engineering,2022,246:110278. |
61 | Pan Lei, Guo Huaxin, Zhong Lang,et al. Influence of surface⁃modified glass fibers on interfacial properties of GF/PEEK composites using molecular dynamics[J]. Computational Materials Science,2021,188:110216. |
62 | Souza Júlio C M, Correia Marta S T,Oliveira Miguel Noronha,et al. PEEK⁃matrix composites containing different content of natural silica fibers or particulate lithium‑zirconium silicate glass fillers: coefficient of friction and wear volume measurements[J]. Biotribology,2020,24:100147. |
63 | Feng Cunao, Guo Yu, Yu Zhenyang,et al. Tribological properties of PEEK composites reinforced by MoS2 modified carbon fiber and nano SiO2 [J]. Tribology International,2023,181:108315. |
64 | Dong Cuicui, Hao Zhimin, Wang Qian,et al. Facile synthesis of metal oxide nanofibers and construction of continuous proton⁃conducting pathways in SPEEK composite membranes[J]. International Journal of Hydrogen Energy,2017,42(40):25 388⁃25 400. |
65 | 李杰. 电纺MWCNT/SPEEK纤维化增强全钒液流电池隔膜的研究[D]. 大连:大连理工大学,2018. |
66 | Rashidi Elham Rezaie,Hamidreza Ghassai Hossein. The effect of carbon nanotube addition on the mechanical properties and biological functionality of poly⁃ether⁃ether⁃ketone⁃hydroxyapatite composites[J]. Polymer Composites,2021,42(7):26055. |
67 | 杨洁. 聚醚醚酮/碳纳米管复合材料:合成及性能研究[D]. 上海:东华大学,2022. |
68 | Berretta S, Davies R, Shyng Y T,et al. Fused deposition modelling of high temperature polymers: exploring CNT PEEK composites[J]. Polymer Testing,2017,63:251⁃262. |
69 | Morteza Asghari, Minoo Mosadegh,Riasat Harami Hossein. Supported PEBA⁃zeolite 13X nano⁃composite membranes for gas separation: preparation, characterization and molecular dynamics simulation[J]. Chemical Engineering Science,2018,187:67⁃78. |
70 | Zeng Haoze, Li Yanbo, Wang Cunwen. Using zeolite imidazole frameworks as ionic cross⁃linkers to improve the performance of composite SPEEK membrane[J]. Separation and Purification Technology,2020,236:116258. |
71 | Zhou Shengyang, Varvara Apostolopoulou‑Kalkavoura,Costa Marcus Vinícius Tavares da,et al. Elastic aerogels of cellulose nanofibers@metal⁃organic frameworks for thermal insulation and fire retardancy[J]. Nano⁃Micro Letters,2020,12(1):102⁃114. |
72 | 李喜方. 磺化聚醚醚酮类湿度传感器的优化设计与性能探究[D]. 长春:吉林大学,2021. |
73 | 庄庄. 磺化聚醚醚酮类湿敏材料的设计及其湿度传感器的性能研究[D]. 长春:吉林大学,2020. |
74 | Tan Chaoliang, Cao Xiehong, Wu XueJun,et al. Recent advances in ultrathin two⁃dimensional nanomaterials [J]. Chemical Reviews,2017,117(9):6 225⁃6 331. |
75 | 杨永波,周晓东. 超声处理配合烧结成型工艺制备PEEK/石墨复合材料[J]. 工程塑料应用,2021,49(8):8⁃13. |
YANG Y B, ZHOU X D. Preparation of PEEK/graphite composites by ultrasonic treatment and sintering process[J]. Engineering Plastics Application,2021,49(8):8⁃13. | |
76 | Dai Wenjing, Shen Yi, Li Zhaohua,et al. SPEEK/graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery[J]. Journal of Materials Chemistry A,2014,2(31):12 423⁃12 432. |
77 | Liu Yucheng, Liu Yan, Chen Mingyan,et al. Strategies for the construction of special wettability metal organic framework membranes: a review[J]. Journal of Water Process Engineering,2023,51:103374. |
78 | Liu Hefang, Cong Shenzhen, Yan Xueru,et al. Honeycomb⁃like hofmann⁃type metal⁃organic framework membranes for C2H2/CO2 and H2/CO2 separation[J]. Journal of Membrane Science,2023,669:121282. |
79 | Hafezeh Nabipour, Nie Shibin, Wang Xin,et al. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants[J]. Cellulose,2020,27(4):2 237⁃2 251. |
80 | Chen Jinchao, Gao Chunmei, Zhao Shuangquan,et al. Construction of PES membranes using NH2⁃MIL-125 and pluronic F127 via RTIPS method toward elevated ultrafiltration, antifouling and self⁃cleaning performance[J]. Journal of Environmental Chemical Engineering,2022,10(2):107162. |
81 | Zaman Tahir, Ayesha Ilyas, Li Xianfeng,et al. Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A[J]. Journal of Applied Polymer Science,2018,135(9/10):45952. |
82 | 朱本胜. 纤维复合SPEEK基质子交换膜的结构调控与性能研究[D]. 北京:中国石油大学,2021. |
83 | 马璋玉. 聚醚醚酮表面紫外光接枝聚苯乙烯磺酸钠改性及其生物学性质研究[D]. 长春:吉林大学,2020. |
84 | Zhong Shuangling, Fu Tiezhu, Dou Zhiyu,et al. Preparation and evaluation of a proton exchange membrane based on crosslinkable sulfonated poly(ether ether ketone)s[J]. Journal of Power Sources,2006,162(1):51⁃57. |
85 | 赵轩. 高导热聚醚醚酮复合材料的制备与性能研究[D]. 长春:吉林大学,2019. |
86 | 王楠,张家强,蔺鹏婷,等. 聚醚醚酮材料表面磺化改性及表面金属化[J]. 宇航材料工艺,2021,51(5):94⁃98. |
WANG N, ZHANG J Q, LIN P T,et al. Surface sulfonation modification and surface metallization of PEEK materials[J]. Aerospace Materials & Technology,2021,51(5):94⁃98. | |
87 | Abhishek Rajput, Raj Savan K, Jeet Sharma,et al. Sulfonated poly ether ether ketone (SPEEK) based composite cation exchange membranes for salt removal from brackish water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,614:126157. |
88 | 邵值. 侧链磺化含氮类聚醚醚酮的分子设计及性能研究[D]. 长春:吉林大学,2018. |
89 | 吕健飞. 聚醚醚酮改性膜的制备及CO2分离性能研究[D]. 石河子:石河子大学,2015. |
90 | 张娅兰,林珺,吴炜亮,等. 活性位点接枝对聚醚醚酮膜基于溶解⁃扩散理论的粒子渗透性能的影响[J]. 包装与食品机械,2022,40(3):7⁃14. |
ZHANG Y L, LIN J, WU W L,et al. Effect of active site grafting on particle permeability of poly ether ether ketone membranes based on dissolution diffusion theory[J]. Packaging and Food Machinery,2022,40(3):7⁃14. | |
91 | 何家鹏,肖凯军,董浩,等. 不同磺化度对磺化聚醚醚酮气体调节膜渗透性的影响[J]. 高分子材料科学与工程,2019,35(5):20⁃26. |
HE J P, XIAO K J, DONG H,et al. Effect of different degrees of sulfonation on permeability of sulfonated poly ether ether ketone gas adjustable membrane[J]. Polymer Materials Science & Engineering,2019,35(5):20⁃26. | |
92 | Tracy Hoefling, David Stofesky, Margaret Reid,et al. The incorporation of a fluorinated ether functionality into a polymer or surfactant to enhance CO2⁃solubility[J]. The Journal of Supercritical Fluids,1992,5(4):237⁃241. |
93 | Hasham Asghar, Ayesha Ilyas, Zaman Tahir,et al. Fluorinated and sulfonated poly (ether ether ketone) and matrimid blend membranes for CO2 separation[J]. Separation and Purification Technology,2018,203:233⁃241. |
94 | Li Gang, Wang Gang, Wei Shiguo,et al. Side⁃chain grafting⁃modified sulfonated poly (ether ether ketone) with significantly improved selectivity for a vanadium redox flow battery[J]. Industrial & Engineering Chemistry Research,2023,62(6):2 460⁃2 468. |
95 | Jiang Shuai, Wang Haixia, Li Lang,et al. Improvement of proton conductivity and efficiency of SPEEK⁃based composite membrane influenced by dual⁃sulfonated flexible comb⁃like polymers for vanadium flow battery[J]. Journal of Membrane Science,2023,671:121394. |
96 | Li Xuan, He Bo, Li Ping,et al. In situ⁃doped sulfonated schiff⁃base networks in SPEEK composite membranes with enhanced proton conductivity[J]. ACS Applied Materials & Interfaces,2023,15(21):25 584⁃25 593. |
97 | Pawar Chetan M, Sooraj Sreenath, Bhavana Bhatt,et al. Surface modification, counter⁃ion exchange effect on thermally annealed sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,667:131295. |
98 | Sheng Jiaxuan, Li Lang, Wang Haixia,et al. An ultrahigh conductivity and efficiency of SPEEK⁃based hybrid proton exchange membrane containing amphoteric GO⁃VIPS nanofillers for vanadium flow battery[J]. Journal of Membrane Science,2023,669:121326. |
99 | 章勤,黄酉腊. SPEEK/B⁃SPEEK共混质子交换膜的制备及其性能[J]. 合成树脂及塑料,2019,36(2):10⁃13,18. |
ZHANG Q, HUANG Y L. Preparation and properties of hybrid proton conducting membranes based on SPEEK/B⁃SPEEK[J]. China Synthetic Resin and Plastics,2019,36(2):10⁃13,18. | |
100 | 郭宇星,沈春晖,高山俊,等. 侧链磺化聚醚醚酮质子交换膜的制备及性能[J]. 膜科学与技术,2020,40(4):34⁃40. |
GUO Y X, SHEN C H, GAO S J,et al. Preparation and properties of side⁃chain⁃sulfonated polyetherketone proton exchange membrane[J]. Membrane Science and Technology(Chinese),2020,40(4):34⁃40. | |
101 | 刘铭辉. 用于电渗析回收废酸的梳状阳离子交换膜制备与性能研究[D]. 天津:天津工业大学,2019. |
102 | Wang Liang, Liu Minghui, Zhao Junhua,et al. Comb⁃shaped sulfonated poly (ether ether ketone) as cation exchange membranes for electrodialysis in acid recovery[J]. Journal of Materials Chemistry A,2018,6(45):22 490⁃22 450. |
103 | Xu Zhaozan, Tang Hongying, Li Nanwen. Enhanced proton/iron permselectivity of sulfonated poly (ether ether ketone) membrane functionalized with basic pendant groups during electrodialysis[J]. Journal of Membrane Science,2020,610:118227. |
[1] | 任国振, 王蒙蒙, 黄建建, 晋刚. 体积拉伸流场下PEEK/TLCP共混物的制备及性能研究[J]. 中国塑料, 2023, 37(8): 1-7. |
[2] | 杨志海 谢众 任鑫祺 庄启昕. 生物可降解PHB材料的研究[J]. , 2023, 37(4): 95-103. |
[3] | 雷鸣, 夏庚培, 江瑜, 艾道义, 游宗英, 喻思亚, 涂建磊, 成皓楠, 向维, 黄代麒. 不同对磨面材质对氟化石墨改性聚醚醚酮摩擦学性能的影响[J]. 中国塑料, 2023, 37(12): 35-40. |
[4] | 杨超永, 郭金强, 王富玉, 张玉霞. 高性能塑料薄膜制备方法及改性研究进展[J]. 中国塑料, 2022, 36(9): 167-179. |
[5] | 王倩, 杨康宁, 翟绍雄, 尹立坤, 何少剑, 林俊. 高质子传导率及尺寸稳定性复合质子交换膜制备及性能研究[J]. 中国塑料, 2022, 36(8): 62-68. |
[6] | 黄素媛, 曹琳, 李卫, 林志丹, 张鹏. 硼化钽增强聚醚醚酮复合涂层的制备及性能评价[J]. 中国塑料, 2022, 36(6): 60-68. |
[7] | 彭鑫, 龙春光, 彭鹰. PEEK/ZA8复合材料的制备及力学与摩擦学性能研究[J]. 中国塑料, 2020, 34(5): 26-31. |
[8] | 田仁杰, 朱光明, 吕玉伟, 吴涛涛, 任天宁, 马志亮, 张爽. 炭黑对聚醚醚酮激光吸收影响的实验研究及数值模拟[J]. 中国塑料, 2020, 34(10): 44-50. |
[9] | 孟正华, 许欢, 郭巍, 王辉, 华林. 汽车废旧塑料物理改性再生技术研究进展[J]. 中国塑料, 2017, 31(08): 105-111 . |
[10] | 刘焕萍, 孙辉. 聚醚醚酮表面接枝O-羧甲基壳聚糖及其血液相容性研究[J]. 中国塑料, 2016, 30(02): 39-42 . |
[11] | 章家立, 瞿秉华. 芳香族聚碳酸酯的化学改性研究进展[J]. 中国塑料, 2016, 30(01): 1-6 . |
[12] | 王志, 雷卓研, 张晓玲, 杨甜甜, 徐艳英. 聚醚醚酮/多壁碳纳米管复合材料力学及阻燃性能研究[J]. 中国塑料, 2014, 28(11): 42-46 . |
[13] | . 聚醚醚酮表面壳聚糖的固定[J]. 中国塑料, 2014, 28(06): 52-56 . |
[14] | 李思远, 包睿莹, 杨伟, 冯建明杨鸣波. 聚醚醚酮共混改性研究进展[J]. 中国塑料, 2014, 28(05): 1-10 . |
[15] | 吴利敏 齐暑华 刘乃亮 理莎莎. 聚醚醚酮改性酚醛树脂热解动力学研究[J]. 中国塑料, 2011, 25(09): 21-24 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||