
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (5): 7-13.DOI: 10.19491/j.issn.1001-9278.2024.05.002
收稿日期:
2023-09-28
出版日期:
2024-05-26
发布日期:
2024-05-20
作者简介:
郭明海(1969—),男,高级工程师,主要研究方向为聚烯烃新产品,guomh.zhlh@sinopec.com
Received:
2023-09-28
Online:
2024-05-26
Published:
2024-05-20
摘要:
为提升高熔融抗冲共聚聚丙烯(IPC⁃J)的刚韧平衡性能,结合抗冲共聚聚丙烯(IPC⁃H)工艺,将IPC⁃J的乙烯含量和乙丙橡胶(EPR)中乙烯含量提高到了12.4 %(质量分数,下同)和54 %。对IPC⁃J、IPC⁃H、IPC⁃1和IPC⁃2等分别进行了分子链段结构和聚集态表征,结果显示,对比IPC⁃H的微观结构,IPC⁃J的EPR含量从19.4 %增至22.8 %,重均分子量(Mw)从2.0×105 g/mol减至1.9×105 g/mol,特性黏度(IV)从1.80 dL/g增到1.86 dL/g,分子量分布指数(MWD)从8.9增至10.7, EPR的最大分子量从1.1×106 g/mol增至1.2×106 g/mol;更多的、相对较长的长乙烯结晶链段有助于改善分散颗粒粒径,占比最大的粒径范围从0.3~0.6 μm升至0.6~0.9 μm;常温和低温冲击强度分别提升至11.0 kJ/m²和5.7 kJ/m²。以300 kt/年聚丙烯生产工艺为基础,在不改变齐格勒⁃纳塔(DQ)型催化剂体系的条件下,通过提高乙烯含量和EPR中乙烯含量实现了高熔融抗冲聚丙烯性能最大优化。
中图分类号:
郭明海. 高熔体流动速率抗冲共聚聚丙烯的结构与性能研究[J]. 中国塑料, 2024, 38(5): 7-13.
GUO Minghai. Studies on structure and properties of high⁃impact copolymerized polypropylene with high melt flow rate[J]. China Plastics, 2024, 38(5): 7-13.
试样 | MFR/ g·(10 min)-1 | 乙烯含量/ % | EPR/ % | EPR中乙烯含量/ % |
---|---|---|---|---|
IPC⁃J | 29.2 | 12.4 | 22.8 | 54 |
IPC⁃H | 29.7 | 9.4 | 19.4 | 48 |
IPC⁃1 | 29.3 | 10.7 | 20.4 | 52 |
IPC⁃2 | 29.6 | 9.2 | 17.8 | 52 |
试样 | MFR/ g·(10 min)-1 | 乙烯含量/ % | EPR/ % | EPR中乙烯含量/ % |
---|---|---|---|---|
IPC⁃J | 29.2 | 12.4 | 22.8 | 54 |
IPC⁃H | 29.7 | 9.4 | 19.4 | 48 |
IPC⁃1 | 29.3 | 10.7 | 20.4 | 52 |
IPC⁃2 | 29.6 | 9.2 | 17.8 | 52 |
试样 | Mw/g·mol-1 | Mn/g·mol-1 | Mw/Mn | IV/dL·g-1 |
---|---|---|---|---|
IPC⁃J | 186 000 | 17 400 | 10.7 | 1.86 |
IPC⁃H | 197 500 | 22 300 | 8.9 | 1.80 |
IPC⁃1 | 197 900 | 21 800 | 9.1 | 1.80 |
IPC⁃2 | 193 200 | 24 000 | 8.0 | 1.71 |
试样 | Mw/g·mol-1 | Mn/g·mol-1 | Mw/Mn | IV/dL·g-1 |
---|---|---|---|---|
IPC⁃J | 186 000 | 17 400 | 10.7 | 1.86 |
IPC⁃H | 197 500 | 22 300 | 8.9 | 1.80 |
IPC⁃1 | 197 900 | 21 800 | 9.1 | 1.80 |
IPC⁃2 | 193 200 | 24 000 | 8.0 | 1.71 |
试样 | 熔融温度/℃ | 熔融焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 结晶度/% | EPR/% |
---|---|---|---|---|---|---|
IPC⁃J | 165.1 | 75.7 | 130.4 | 74.7 | 36.2 | 22.8 |
IPC⁃H | 165.0 | 78.7 | 131.2 | 77.7 | 37.7 | 19.4 |
IPC⁃1 | 166.7 | 79.2 | 131.2 | 79.8 | 37.9 | 20.4 |
IPC⁃2 | 165.8 | 80.0 | 129.4 | 81.9 | 38.3 | 17.8 |
试样 | 熔融温度/℃ | 熔融焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 结晶度/% | EPR/% |
---|---|---|---|---|---|---|
IPC⁃J | 165.1 | 75.7 | 130.4 | 74.7 | 36.2 | 22.8 |
IPC⁃H | 165.0 | 78.7 | 131.2 | 77.7 | 37.7 | 19.4 |
IPC⁃1 | 166.7 | 79.2 | 131.2 | 79.8 | 37.9 | 20.4 |
IPC⁃2 | 165.8 | 80.0 | 129.4 | 81.9 | 38.3 | 17.8 |
试样 | 初期结晶 | 初期结晶+二次结晶 | 后期结晶 | ||||||
---|---|---|---|---|---|---|---|---|---|
kc | n | t1/2/s | kc | n | t1/2/s | kc | n | t1/2/s | |
IPC⁃J | 0.341 6 | 2.43 | 71 | 0.270 6 | 3.40 | 42 | 0.680 5 | 1.17 | 20 |
IPC⁃H | 0.369 7 | 2.07 | 102 | 0.274 7 | 3.39 | 41 | 0.707 5 | 1.06 | 19 |
IPC⁃1 | 0.356 7 | 2.04 | 131 | 0.236 7 | 3.69 | 45 | 0.653 8 | 1.25 | 22 |
IPC⁃2 | 0.326 6 | 2.25 | 123 | 0.222 0 | 3.82 | 47 | 0.579 8 | 1.52 | 28 |
试样 | 初期结晶 | 初期结晶+二次结晶 | 后期结晶 | ||||||
---|---|---|---|---|---|---|---|---|---|
kc | n | t1/2/s | kc | n | t1/2/s | kc | n | t1/2/s | |
IPC⁃J | 0.341 6 | 2.43 | 71 | 0.270 6 | 3.40 | 42 | 0.680 5 | 1.17 | 20 |
IPC⁃H | 0.369 7 | 2.07 | 102 | 0.274 7 | 3.39 | 41 | 0.707 5 | 1.06 | 19 |
IPC⁃1 | 0.356 7 | 2.04 | 131 | 0.236 7 | 3.69 | 45 | 0.653 8 | 1.25 | 22 |
IPC⁃2 | 0.326 6 | 2.25 | 123 | 0.222 0 | 3.82 | 47 | 0.579 8 | 1.52 | 28 |
样品 | MFR/g·(10 min)-1 | 拉伸屈服应力/MPa | 弯曲模量/MPa | 简支梁缺口冲击强度/kJ·m-² | 负荷变形温度(Tf0.45)/℃ | 洛氏硬度(R标尺)/HR | |
---|---|---|---|---|---|---|---|
23 ℃ | 20 ℃ | ||||||
IPC⁃J | 29.2 | 22.6 | 1 210 | 11.0 | 5.7 | 95 | 91 |
IPC⁃H | 29.7 | 24.6 | 1 260 | 7.6 | 4.1 | 93 | 95 |
IPC⁃1 | 29.3 | 23.3 | 1 230 | 12.0 | 5.6 | 96 | 97 |
IPC⁃2 | 29.6 | 24.6 | 1 260 | 8.1 | 3.8 | 97 | 95 |
样品 | MFR/g·(10 min)-1 | 拉伸屈服应力/MPa | 弯曲模量/MPa | 简支梁缺口冲击强度/kJ·m-² | 负荷变形温度(Tf0.45)/℃ | 洛氏硬度(R标尺)/HR | |
---|---|---|---|---|---|---|---|
23 ℃ | 20 ℃ | ||||||
IPC⁃J | 29.2 | 22.6 | 1 210 | 11.0 | 5.7 | 95 | 91 |
IPC⁃H | 29.7 | 24.6 | 1 260 | 7.6 | 4.1 | 93 | 95 |
IPC⁃1 | 29.3 | 23.3 | 1 230 | 12.0 | 5.6 | 96 | 97 |
IPC⁃2 | 29.6 | 24.6 | 1 260 | 8.1 | 3.8 | 97 | 95 |
1 | Kang P, Wu P, Jin Y, et al. Formation and emissions of volatile organic compounds from homo⁃PP and co⁃PP resins during manufacturing process and accelerated photoaging degradation [J]. Molecules, 2020, 25(12): 2761. |
2 | 王子强.HR催化剂在PP EP548R生产中的应用[J].合成树脂及塑料,2023,40(02):47⁃51. |
WANG Z Q. Application of HR catalysts in PP EP548R production[J]. China Synthetic Resin and Plastics,2023,40(02):47⁃51. | |
3 | Jeziorny A. Parameters characterizing the kinetics of the non⁃isothermal crystallization of poly(ethylene terephthalate) determined by DSC [J]. Polymer, 1978, 19(10): 1 142⁃1 144. |
4 | Menyhárd A, Dora G, Horváth Z, et al. Kinetics of competitive crystallization of β⁃and α⁃modifications in β⁃nucleated iPP studied by isothermal stepwise crystallization technique[J]. Journal of Thermal Analysis and Calorimetry, 2012, 108(2): 613⁃620. |
5 | 张恒源,刘建叶,王绍杰,等.聚丙烯在溶液中的等温结晶行为[J].中国塑料,2023,37(01):13⁃17. |
ZHANG H Y, LIU J Y, WANG S J, et al. Isothermal crystallization behavior of polypropylene in solution [J]. China Plastics, 2023, 37(01):13⁃17. | |
6 | 王帆,刘小燕,周玲,等.抗冲共聚聚丙烯的结构与性能[J].合成树脂及塑料,2019,36(01):58⁃62+68. |
WANG F, LIU X Y, ZHOU L, et al. Structure and properties of IPC [J]. China Synthetic Resin and Plastics,2019,36(01):58⁃62+68. | |
7 | Müller A J, Hernández Z H, Arnal M L, et al. Successive self⁃nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization[J]. Polymer bulletin, 1997, 39: 465⁃472. |
8 | Zhou T, Yang H, Ning N, et al. Partial melting and recrystallization of isotactic polypropylene[J]. Chinese Journal of Polymer Science, 2010, 28: 77⁃83. |
9 | Chang H, Zhang Y, Ren S, et al. Study on the sequence length distribution of polypropylene by the successive self⁃nucleation and annealing (SSA) calorimetric technique [J]. Polymer Chemistry, 2012, 3(10): 2 909⁃2 919. |
10 | Hu D, Ye S, Yu F, et al. Further understanding on the three domains of isotactic polypropylene by investigating the crystalline morphologies evolution after treatment at different domains [J]. Chinese Journal of Polymer Science, 2016, 34: 344⁃358. |
11 | 王居兰,田广华,梁雪美.高流动性抗冲共聚聚丙烯热性能与动态力学性能分析[J].中国塑料,2016,30(01):45⁃51. |
WANG J L, TIAN G H, LIANG X M. Study on thermal behavior and dynamic mechanical properties of highly impact polypropylene copolymer with high flowability [J]. China Plastics,2016,30(01):45⁃51. | |
12 | Kang J, Yang F, Wu T, et al. Polymerization control and fast characterization of the stereo⁃defect distribution of heterogeneous Ziegler⁃Natta isotactic polypropylene[J]. European Polymer Journal, 2012, 48(2): 425⁃434. |
13 | Góra M, Tranchida D, Albrecht A, et al. Fast successive self‐nucleation and annealing (SSA) thermal fractionation protocol for the characterization of polyolefin blends from mechanical recycling [J]. Journal of Polymer Science, 2022, 60(24): 3 366⁃3 378. |
14 | 王相,刘小燕,赵新亮,等.SSA热分级技术在表征IPC各组分相互作用中的应用[J].合成树脂及塑料,2020,37(02):72⁃77+89. |
WANG X, LIU X Y, ZHAO X L, et al. Application of SSA thermal fraction technology in characterization of interaction of components in IPC [J]. China Synthetic Resin and Plastics,2020,37(02):72⁃77+89. | |
15 | 李丽,张鹏,唐婧,等.高流动高刚抗冲共聚聚丙烯聚合工艺与结构和性能关系研究[J].塑料科技,2023,51(02):64⁃68. |
LI L, ZHANG P, TANG J, et al. Study on relationship between polymerization process and structure and properties of polypropylene copolymer with high flow, high rigidity and impact resistance [J]. Plastics Science and Technology,2023,51(02):64⁃68. | |
16 | 许楚荣,蒋文军,封水彬.低有机挥发物抗冲聚丙烯产品结构与性能的对比[J].石油化工,2022,51(09):1 091⁃1 095. |
XU C R, JIANG W J, FENG S B. Comparation on structure and properties of low volatile organic compound impact polypropylene products [J]. Petrochemical Technology,2022,51(09):1 091⁃1 095. | |
17 | Li F, Gao Y, Zhang Y, et al. Design of high impact thermal plastic polymer composites with balanced toughness and rigidity: Toughening with core⁃shell rubber modifier [J]. Polymer, 2020, 191: 122237. |
18 | Jia E, Zhao S, Shangguan Y, et al. Toughening mechanism of polypropylene bends with polymer particles in core⁃shell structure: Equivalent rubber content effect related to core⁃shell interfacial strength [J]. Polymer, 2019, 178: 121602. |
19 | Li F, Zhang N, Gao Y, et al. In situ formation of core⁃shell rubber particles in polypropylene matrix by melt blending and its effects on the toughness and stiffness of the composites [J]. Polymer Engineering & Science, 2022, 62(12): 4 090⁃4 099. |
[1] | 郝文博, 唐诗, 苏婷婷, 王战勇. 不同直链含量酯化淀粉的合成与性能[J]. 中国塑料, 2024, 38(5): 19-23. |
[2] | 孛海娃, 赵中国, 王筹萱, 薛嵘. 高导电、低逾渗PLA/CNTs导电复合材料的结构设计及性能研究[J]. 中国塑料, 2024, 38(4): 13-18. |
[3] | 荣迪, 贾志欣, 刘立君, 李继强, 赵川涛, 高利珍, 王少峰. 环氧树脂/碳纤维复合材料模压制品冲击强度影响因素分析[J]. 中国塑料, 2024, 38(1): 55-61. |
[4] | 邹永昆 范温柔 余彪 郭森 高天明 何经纬 刘芳. 耐化学抗菌改性PC/TPU共混合金的制备及性能研究[J]. , 2023, 37(7): 41-46. |
[5] | 徐佳 李园 冯昆鹏 谢吉星 王颖赛 张智强. 聚乳酸/芦苇纤维复合材料降解性能研究[J]. , 2023, 37(4): 23-29. |
[6] | 何和智 杨以科 赵健雄. 一种高效制备高性能PLA/PBAT复合材料的方法及其性能研究[J]. , 2023, 37(3): 1-6. |
[7] | 戴熙瀛, 张翀, 万彩霞, 杨威, 邢照亮. 影响BOPP电容膜击穿场强的微观结构及与制备工艺的关系探究[J]. 中国塑料, 2023, 37(12): 29-34. |
[8] | 李贞印, 张效琳, 魏聪, 施智勇, 邵春光. 增压对聚丙烯/多壁碳纳米管复合材料结晶行为的影响[J]. 中国塑料, 2023, 37(10): 117-124. |
[9] | 李贞印 张效琳 魏聪 施智勇 邵春光. 增压对聚丙烯/多壁碳纳米管复合材料结晶行为的影响[J]. , 2023, 37(10): 117-124. |
[10] | 李毅, 樊桂琪, 吴天宇, 叶海木. 石墨微片对聚三氟氯乙烯结晶及性能的影响[J]. 中国塑料, 2023, 37(1): 18-25. |
[11] | 张恒源, 刘建叶, 王绍杰, 徐耀辉, 张师军. 聚丙烯在溶液中的等温结晶行为[J]. 中国塑料, 2023, 37(1): 13-17. |
[12] | 黄嘉伟, 韩小龙, 吴悠, 靳玉娟, 王朝. 生物基工程聚酯弹性体对聚(3⁃羟基丁酸酯⁃co⁃3⁃羟基戊酸酯)的增韧改性研究[J]. 中国塑料, 2022, 36(9): 24-31. |
[13] | 李瑞, 姜艳峰, 吴双, 安彦杰, 姜泽钰, 张明强. 升温淋洗分级研究聚丙烯流延膜专用料的微观结构及热学表征[J]. 中国塑料, 2022, 36(3): 53-57. |
[14] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
[15] | 张泽文, 朱恩赐, 张熙祥, 魏丽娟, 赵世成. 两种羧酸盐成核剂的制备及其对聚丙烯的成核效果研究[J]. 中国塑料, 2022, 36(12): 100-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||