
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (5): 88-94.DOI: 10.19491/j.issn.1001-9278.2025.05.014
杨晴1, 蔡加锋2, 顾卫华1, 彭圣娟1(), 赵静1, 白建峰1
收稿日期:
2024-07-04
出版日期:
2025-05-26
发布日期:
2025-05-22
通讯作者:
彭圣娟(1990—),女,讲师,从事塑料生物降解研究,sjpeng@sspu.edu.cn基金资助:
YANG Qing1, CAI Jiafeng2, GU Weihua1, PENG Shengjuan1(), ZHAO Jing1, BAI Jianfeng1
Received:
2024-07-04
Online:
2025-05-26
Published:
2025-05-22
Contact:
PENG Shengjuan
E-mail:sjpeng@sspu.edu.cn
摘要:
现代工业的发展使得塑料制品的使用量急剧增加,废旧塑料因其高疏水性和化学惰性而难以被自然降解,在“碳达峰、碳中和”背景下,塑料废物可持续管理刻不容缓。生物降解是以环境友好的方式处理塑料废物的最佳方法之一,近年来,广泛的研究工作都集中在具有塑料降解能力的微生物和酶的鉴定上。本文综述了6种常见的塑料以及它们近期的生物降解研究进展,总结了塑料降解的表征方法并探讨了其降解机理。
中图分类号:
杨晴, 蔡加锋, 顾卫华, 彭圣娟, 赵静, 白建峰. 生物降解法对塑料废物可持续管理的研究进展[J]. 中国塑料, 2025, 39(5): 88-94.
YANG Qing, CAI Jiafeng, GU Weihua, PENG Shengjuan, ZHAO Jing, BAI Jianfeng. Research progress in sustainable management of plastic waste by biodegradation[J]. China Plastics, 2025, 39(5): 88-94.
微生物 | 降解塑料 | 参考文献 |
---|---|---|
Bacillus cereus | PE | [ |
Pseudomonas tuomurensis | PE | [ |
Acinetobacter baumannii RdH2 | PE | [ |
Lysinibacillus sp. JJY0216 | PE, PP | [ |
Alcaligenes faecalis ISJ128 | PE | [ |
Cladosporium halotolerans | PE | [ |
Bacillus cereus CH6 | PS | [ |
Pseudomonas aeruginosa WGH⁃6 | PP | [ |
Serratia marcescens | PP | [ |
Enterobacter spp. | PP | [ |
Aspergillus spp. | PP | [ |
Penicillium granulatum | PP | [ |
Fusarium oxysporum | PP | [ |
Klebsiella sp. EMBL⁃1 | PVC | [ |
Alteromonas BP⁃4.3 | PVC | [ |
Bacillus velezensis GUIA | PUR | [ |
Fusarium sp. | PUR | [ |
Bacillus sp. AIIW2 | PET | [ |
Rhizobacter gummiphilus | PET | [ |
微生物 | 降解塑料 | 参考文献 |
---|---|---|
Bacillus cereus | PE | [ |
Pseudomonas tuomurensis | PE | [ |
Acinetobacter baumannii RdH2 | PE | [ |
Lysinibacillus sp. JJY0216 | PE, PP | [ |
Alcaligenes faecalis ISJ128 | PE | [ |
Cladosporium halotolerans | PE | [ |
Bacillus cereus CH6 | PS | [ |
Pseudomonas aeruginosa WGH⁃6 | PP | [ |
Serratia marcescens | PP | [ |
Enterobacter spp. | PP | [ |
Aspergillus spp. | PP | [ |
Penicillium granulatum | PP | [ |
Fusarium oxysporum | PP | [ |
Klebsiella sp. EMBL⁃1 | PVC | [ |
Alteromonas BP⁃4.3 | PVC | [ |
Bacillus velezensis GUIA | PUR | [ |
Fusarium sp. | PUR | [ |
Bacillus sp. AIIW2 | PET | [ |
Rhizobacter gummiphilus | PET | [ |
特性 | 表征方法 | 对生物降解的典型观察结果 | 参考文献 |
---|---|---|---|
表面形态学 | SEM | 表面粗糙度增加,在塑料表面形成凹坑和裂纹 | [ |
干重 | 质量损失 | 塑料失重量增加 | [ |
结晶度 | DSC、XRD | 聚合物结晶度总体下降 | [ |
疏水性 | 测角仪测量水接触角 | 接触角的减少,聚合物亲水性增加 | [ |
力学性能 | 聚合物结构拉伸测试 | 降低了塑料的伸长率和拉伸强度 | [ |
官能团 | FTIR | O—H、C—O和C=O基团增加 | [ |
分子量 | GPC | 塑料分子量降低 | [ |
CO2 生成量 | 在干燥器中捕获CO2,用NaOH溶液进行滴定 | CO2的增加表明了生物降解过程的矿化阶段 | [ |
较小的化合物/单体 | GC⁃MS | 存在有机化合物(如羧酸和烷烃) | [ |
特性 | 表征方法 | 对生物降解的典型观察结果 | 参考文献 |
---|---|---|---|
表面形态学 | SEM | 表面粗糙度增加,在塑料表面形成凹坑和裂纹 | [ |
干重 | 质量损失 | 塑料失重量增加 | [ |
结晶度 | DSC、XRD | 聚合物结晶度总体下降 | [ |
疏水性 | 测角仪测量水接触角 | 接触角的减少,聚合物亲水性增加 | [ |
力学性能 | 聚合物结构拉伸测试 | 降低了塑料的伸长率和拉伸强度 | [ |
官能团 | FTIR | O—H、C—O和C=O基团增加 | [ |
分子量 | GPC | 塑料分子量降低 | [ |
CO2 生成量 | 在干燥器中捕获CO2,用NaOH溶液进行滴定 | CO2的增加表明了生物降解过程的矿化阶段 | [ |
较小的化合物/单体 | GC⁃MS | 存在有机化合物(如羧酸和烷烃) | [ |
1 | Law K L, Narayan R. Reducing environmental plastic pollution by designing polymer materials for managed end⁃of⁃life[J]. Nature Reviews Materials, 2022, 7(2): 104⁃116. |
2 | Liu K, Wang X, Song Z, et al. Global inventory of atmospheric fibrous microplastics input into the ocean: an implication from the indoor origin[J]. Journal of Hazardous Materials, 2020, 400: 123223. |
3 | Tang S, Lin L, Wang X, et al. Pb (II) uptake onto nylon microplastics: interaction mechanism and adsorption performance[J]. Journal of hazardous materials, 2020, 386: 121960. |
4 | Feng Z, Zhang T, Shi H, et al. Microplastics in bloom⁃forming macroalgae: distribution, characteristics and impacts[J]. Journal of hazardous materials, 2020, 397: 122752. |
5 | Gao G, Burgess J G, Wu M, et al. Using macroalgae as biofuel: current opportunities and challenges[J]. Botanica Marina, 2020, 63(4): 355⁃370. |
6 | Li Q, Feng Z, Zhang T, et al. Microplastics in the commercial seaweed nori[J]. Journal of hazardous materials, 2020, 388: 122060. |
7 | Aslani H, Pashmtab P, Shaghaghi A, et al. Tendencies towards bottled drinking water consumption: Challenges ahead of polyethylene terephthalate (PET) waste management[J]. Health Promotion Perspectives, 2021, 11(1): 60. |
8 | Nabi I, Zhang L. A review on microplastics separation techniques from environmental media[J]. Journal of Cleaner Production, 2022, 337: 130458. |
9 | Wang L, Wu W M, Bolan N S, et al. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives[J]. Journal of hazardous materials, 2021, 401: 123415. |
10 | Kumar M, Xiong X, He M, et al. Microplastics as pollutants in agricultural soils[J]. Environmental Pollution, 2020, 265: 114980. |
11 | Kumar V, Maitra S S, Singh R, et al. Acclimatization of a newly isolated bacteria in monomer tere⁃phthalic acid (TPA) may enable it to attack the polymer poly⁃ethylene tere⁃phthalate (PET)[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103977. |
12 | Delangiz N, Aliyar S, Pashapoor N, et al. Can polymer⁃degrading microorganisms solve the bottleneck of plastics’ environmental challenges?[J]. Chemosphere, 2022, 294: 133709. |
13 | Ali S S, Elsamahy T, Al⁃Tohamy R, et al. Plastic wastes biodegradation: Mechanisms, challenges and future prospects[J]. Science of The Total Environment, 2021, 780: 146590. |
14 | Mohanan N, Montazer Z, Sharma P K, et al. Microbial and enzymatic degradation of synthetic plastics[J]. Frontiers in Microbiology, 2020, 11: 580709. |
15 | Nabi I, Zaheer M, Jin W, et al. Biodegradation of macro⁃and micro⁃plastics in environment: A review on mechanism, toxicity, and future perspectives[J]. Science of the Total Environment, 2023, 858: 160108. |
16 | Fernández⁃González V, Andrade⁃Garda J M, López⁃Mahía P, et al. Misidentification of PVC microplastics in marine environmental samples[J]. TrAC Trends in Analytical Chemistry, 2022, 153: 116649. |
17 | Zhang H, Kong D, Wang L, et al. Degradation of UV⁃pretreated polyolefins by latex clearing protein from Streptomyces sp. Strain K30[J]. Science of The Total Environment, 2022, 806: 150779. |
18 | Zhang Y, Pedersen J N, Eser B E, et al. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery[J]. Biotechnology Advances, 2022, 60: 107991. |
19 | Sharma H, Neelam D K. Understanding challenges associated with plastic and bacterial approach toward plastic degradation[J]. Journal of Basic Microbiology, 2023, 63(3/4): 292⁃307. |
20 | Jadaun J S, Bansal S, Sonthalia A, et al. Biodegradation of plastics for sustainable environment[J]. Bioresource Technology, 2022, 347: 126697. |
21 | Glas D, Hulsbosch J, Dubois P, et al. End‐of‐life treatment of poly (vinyl chloride) and chlorinated polyethylene by dehydrochlorination in ionic liquids[J]. ChemSusChem, 2014, 7(2): 610⁃617. |
22 | Liu J, He J, Xue R, et al. Biodegradation and up⁃cycling of polyurethanes: Progress, challenges, and prospects[J]. Biotechnology Advances, 2021, 48: 107730. |
23 | Soong Y H V, Sobkowicz M J, Xie D. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes[J]. Bioengineering, 2022, 9(3): 98. |
24 | Kopecká R, Kubínová I, Sovová K, et al. Microbial degradation of virgin polyethylene by bacteria isolated from a landfill site[J]. SN Applied Sciences, 2022, 4(11): 302. |
25 | Zhang F, Zhao Y, Wang D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production, 2021, 282: 124523. |
26 | Jeon J M, Park S J, Choi T R, et al. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove[J]. Polymer Degradation and Stability, 2021, 191: 109662. |
27 | Devi D, Gupta K K, Chandra H, et al. Biodegradation of low⁃density polyethylene (LDPE) through application of indigenous strain Alcaligenes faecalis ISJ128[J]. Environmental Geochemistry and Health, 2023, 45(12): 9 391⁃9 409. |
28 | Di Napoli M, Silvestri B, Castagliuolo G, et al. High density polyethylene (HDPE) biodegradation by the fungus Cladosporium halotolerans[J]. FEMS Microbiology Ecology, 2023, 99(2): 148. |
29 | Yuan J, Cao J, Yu F, et al. Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem[J]. Sustainable Chemistry and Pharmacy, 2022, 30: 100873. |
30 | Wang P, Zhao J, Ruan Y, et al. Degradation of polypropylene by the Pseudomonas aeruginosa strains LICME WZH-4 and WGH-6[J]. Journal of Polymers and the Environment, 2022, 30(9): 3 949⁃3 958. |
31 | Wróbel M, Szymańska S, Kowalkowski T, et al. Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation[J]. Microbiological Research, 2023, 267: 127251. |
32 | Zhang Z, Peng H, Yang D, et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae[J]. Nature Communications, 2022, 13(1): 5360. |
33 | Khandare S D, Chaudhary D R, Jha B. Bioremediation of polyvinyl chloride (PVC) films by marine bacteria[J]. Marine Pollution Bulletin, 2021, 169: 112566. |
34 | Gui Z, Liu G, Liu X, et al. A deep⁃sea bacterium is capable of degrading polyurethane[J]. Microbiology Spectrum, 2023, 11(3): e00073⁃23. |
35 | Taxeidis G, Nikolaivits E, Siaperas R, et al. Triggering and identifying the polyurethane and polyethylene⁃degrading machinery of filamentous fungi secretomes[J]. Environmental Pollution, 2023, 325: 121460. |
36 | Kumari A, Bano N, Bag S K, et al. Transcriptome⁃guided insights into plastic degradation by the marine bacterium[J]. Frontiers in Microbiology, 2021, 12: 751571. |
37 | Sagong H Y, Son H F, Seo H, et al. Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis[J]. Journal of Hazardous Materials, 2021, 416: 126075. |
38 | Tiwari N, Santhiya D, Sharma J G. Degradation of polyethylene microplastics through microbial action by a soil isolate of Brevibacillus brevis[J]. Polymer Degradation and Stability, 2023, 215: 110436. |
39 | Wu H, Liu Q, Sun W, et al. Biodegradability of polyethylene mulch film by Bacillus paramycoides[J]. Chemosphere, 2023, 311: 136978. |
40 | Zhang J, Gao D, Li Q, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella[J]. Science of the Total Environment, 2020, 704: 135931. |
41 | Nair S, Hrishikesh M V, Sudeep S M, et al. Degradation of high⁃density polyethylene mediated by fungus talaromyces liani JA2HS[J]. Applied Biochemistry and Microbiology, 2024: 1⁃9. |
42 | Montazer Z, Habibi Najafi M B, Levin D B. Challenges with verifying microbial degradation of polyethylene[J]. Polymers, 2020, 12(1): 123. |
43 | Inderthal H, Tai S L, Harrison S T L. Non⁃hydrolyzable plastics–an interdisciplinary look at plastic bio⁃oxidation[J]. Trends in Biotechnology, 2021, 39(1): 12⁃23. |
44 | Sanluis⁃Verdes A, Colomer⁃Vidal P, Rodriguez⁃Ventura F, et al. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella[J]. Nature Communications, 2022, 13(1): 1⁃11. |
45 | Zhu B, Wang D, Wei N. Enzyme discovery and engineering for sustainable plastic recycling[J]. Trends in biotechnology, 2022, 40(1): 22⁃37. |
46 | Chaudhary A K, Vijayakumar R P. Studies on biological degradation of polystyrene by pure fungal cultures[J]. Environment, Development and Sustainability, 2020, 22(5): 4 495⁃4 508. |
47 | Lin W, Yao Y, Su T, et al. Biodegradation of polystyrene by bacteria isolated from the yellow mealworm (Tenebrio molitor) gut[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112071. |
48 | Zhang T, Li X, Rao X, et al. Biodegradation of polystyrene and polyethylene by Microbacterium esteraromaticum SW3 isolated from soil[J]. Ecotoxicology and Environmental Safety, 2024, 274: 116207. |
49 | Jeyavani J, Al⁃Ghanim K A, Govindarajan M, et al. Bacterial screening in Indian coastal regions for efficient polypropylene microplastics biodegradation[J]. Science of The Total Environment, 2024, 918: 170499. |
50 | Xu Y, Xian Z N, Yue W, et al. Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae[J]. Chemosphere, 2023, 318: 137944. |
51 | Peng Y H, Shih Y, Lai Y C, et al. Degradation of polyurethane by bacterium isolated from soil and assessment of polyurethanolytic activity of a Pseudomonas putida strain[J]. Environmental Science and Pollution Research, 2014, 21: 9 529⁃9 537. |
52 | Jin X, Dong J, Guo X, et al. Current advances in polyurethane biodegradation[J]. Polymer International, 2022, 71(12): 1 384⁃1 392. |
53 | Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum‐based plastics: how far are we?[J]. Microbial Biotechnology, 2017, 10(6): 1 308⁃1 322. |
54 | Khan S, Nadir S, Shah Z U, et al. Biodegradation of polyester polyurethane by Aspergillus tubingensis[J]. Environmental pollution, 2017, 225: 469⁃480. |
55 | Liu J, Zeng Q, Lei H, et al. Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways[J]. Journal of Hazardous Materials, 2023, 448: 130776. |
56 | Álvarez⁃Barragán J, Domínguez⁃Malfavón L, Vargas⁃Suárez M, et al. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams[J]. Applied and environmental microbiology, 2016, 82(17): 5 225⁃5 235. |
57 | Müller R J, Schrader H, Profe J, et al. Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular rapid communications, 2005, 26(17): 1 400⁃1 405. |
58 | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly (ethylene terephthalate)[J]. Science, 2016, 351(6 278): 1 196⁃1 199. |
59 | Han X, Liu W, Huang J W, et al. Structural insight into catalytic mechanism of PET hydrolase[J]. Nature communications, 2017, 8(1): 2106. |
60 | Eiamthong B, Meesawat P, Wongsatit T, et al. Discovery and genetic code expansion of a polyethylene terephthalate (PET) hydrolase from the human saliva metagenome for the degradation and bio‐functionalization of PET[J]. Angewandte Chemie, 2022, 134(37): e202203061. |
61 | Swamy T M C, Nagarathna S V, Reddy P V, et al. Efficient biodegradation of Polyethylene terephthalate (PET) plastic by Gordonia sp. CN2K isolated from plastic contaminated environment[J]. Ecotoxicology and Environmental Safety, 2024, 281: 116635. |
62 | Tao X, Ouyang H, Zhou A, et al. Polyethylene degradation by a Rhodococcous strain isolated from naturally weathered plastic waste enrichment[J]. Environmental Science & Technology, 2023, 57(37): 13 901⁃13 911. |
63 | Singh R S, Gilcrease E B, Goel R, et al. The rising tide of plastic pollution: exploring bacillus sp. for sustainable microbial degradation of polyethylene[J]. Journal of Polymers and the Environment, 2024: 1⁃14. |
64 | Tang Z, Zhao Y, Wang Z, et al. Cobalt catalyzed carbonyl functionalization to boost the biodegradation of polyethylene by Bacillus velezensis C5[J]. Chemical Engineering Journal, 2024, 495: 153226. |
65 | Sun Y, Ren X, Rene E R, et al. The degradation performance of different microplastics and their effect on microbial community during composting process[J]. Bioresource Technology, 2021, 332: 125133. |
66 | Li X, Li G, Wang J, et al. Elucidating polyethylene microplastic degradation mechanisms and metabolic pathways via iron⁃enhanced microbiota dynamics in marine sediments[J]. Journal of Hazardous Materials, 2024, 466: 133655. |
67 | Castelvetro V, Corti A, Biale G, et al. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by⁃products[J]. Environmental Science and Pollution Research, 2021: 1⁃17. |
68 | 干牧凡, 张妍, 时鹏, 等. 塑料的微生物降解机理研究进展[J]. 生态毒理学报, 2023:18. |
GAN M F, ZHANG Y, SHI P, et al. Research progress on microbial degradation mechanism of plastics [J]. Asian Journal of Ecotoxicology, 2023:18. | |
69 | Jacquin J, Cheng J, Odobel C, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “Plastisphere”[J]. Frontiers in microbiology, 2019, 10: 865. |
70 | Xu J, Cui Z, Nie K, et al. A quantum mechanism study of the CC bond cleavage to predict the bio⁃catalytic polyethylene degradation[J]. Frontiers in microbiology, 2019, 10: 489. |
71 | Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes[J]. Frontiers in Microbiology, 2020, 11: 507487. |
72 | Wu Z, Shi W, Valencak T G, et al. Biodegradation of conventional plastics: Candidate organisms and potential mechanisms[J]. Science of The Total Environment, 2023: 163908. |
73 | Sharma B, Rawat H, Pooja S R. Bioremediation⁃A Progressive approach toward reducing plastic wastes[J]. Int J Curr Microbiol Appl Sci, 2017, 6(12): 1 116⁃1 131. |
[1] | 杨帆 侯梦宗 宋丽莎 胡润 马瑜浩 刘强 张宏. 微/纳米塑料在农业土壤中的趋势和影响[J]. , 2025, 39(5): 52-58. |
[2] | 杨帆, 候梦宗, 宋丽莎, 胡润, 马瑜浩, 刘强, 张宏. 微/纳米塑料在农业土壤中的趋势和影响[J]. 中国塑料, 2025, 39(4): 52-58. |
[3] | 张丽平, 谢同, 高永平. 生物可降解塑料行业发展现状、存在问题与建议[J]. 中国塑料, 2025, 39(4): 75-83. |
[4] | 李静, 肖东, 何雨, 代在波. 改性回收PP塑料颗粒对混凝土切口梁弯曲性能影响[J]. 中国塑料, 2025, 39(4): 92-96. |
[5] | 何文峰, 赵彤杰, 谢于辉, 梅毅, 谢德龙. 耐高温含氢乙烯基有机硅树脂的合成及改性[J]. 中国塑料, 2025, 39(1): 31-36. |
[6] | 文麒霖, 贾雪华, 孙炎君, 牛思霁, 陈英红, 陈宁. 生物可降解塑料包装薄膜的制备及应用进展[J]. 中国塑料, 2024, 38(9): 112-122. |
[7] | 肖进男, 张珍明. 农田土壤中微塑料的来源、赋存特征及其潜在风险[J]. 中国塑料, 2024, 38(9): 137-144. |
[8] | 施珣若. 聚氯乙烯塑料建材的现状和展望[J]. 中国塑料, 2024, 38(9): 145-153. |
[9] | 殷茂峰, 王晓珂, 孙国华, 张信, 李鹏鹏, 马劲松, 肖军, 侯连龙. 红外光谱快速检测生物降解聚酯的研究[J]. 中国塑料, 2024, 38(9): 94-100. |
[10] | 王兴国, 吕明福, 黄逸伦, 郭鹏, 高达利, 张师军. 聚乙醇酸高温降解性能研究及其调控方法[J]. 中国塑料, 2024, 38(8): 13-19. |
[11] | 杨蕊, 郭杨, 周金友. 基于随机骨料模型的EPS颗粒混凝土蒸养损伤及微观分析[J]. 中国塑料, 2024, 38(7): 74-78. |
[12] | 刘宝莹, 杨晨光, 赵猛, 李清政, 王磊, 翟华. 可见光和红外光双光路激发的废旧塑料瓶分选试验[J]. 中国塑料, 2024, 38(6): 111-116. |
[13] | 姬娅茹, 李瑞丽, 翟永怡, 张世博. MOF⁃808改性材料吸附脱除塑料油品中的有机氯化物[J]. 中国塑料, 2024, 38(6): 82-89. |
[14] | 孟凡悦, 文悦, 李琛, 高珊. 生物基塑料包装需氧生物降解研究进展[J]. 中国塑料, 2024, 38(4): 109-115. |
[15] | 刘学. 《中国塑料》首届高分子材料技术创新与应用论坛上的新观点、新成果[J]. 中国塑料, 2024, 38(4): 124-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||