
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (8): 13-19.DOI: 10.19491/j.issn.1001-9278.2024.08.003
收稿日期:
2023-12-12
出版日期:
2024-08-26
发布日期:
2024-08-19
作者简介:
王兴国(1994—),男,副研究员,从事可降解材料、塑料改性研究,wangxg.bjhy@sinopec.com
WANG Xingguo(), LV Mingfu, HUANG Yilun, GUO Peng, GAO Dali, ZHANG Shijun
Received:
2023-12-12
Online:
2024-08-26
Published:
2024-08-19
摘要:
评价聚乙醇酸(PGA)在不同温度和不同pH环境下的降解性能,研究降解过程中PGA的结晶性能、热稳定性的变化,并通过液相色谱⁃质谱联用分析PGA的降解产物。随后,分别使用聚碳化二胺类抗水解剂HyMax@210和环氧类扩链剂ADR⁃6488熔融共混改性PGA,研究2种助剂对PGA的熔体流动性、热稳定性、力学性能和降解性能的影响。结果表明:PGA在高温水溶液中的降解性能远优于传统可降解材料,130 ℃水中10 h降解完全,降解产物主要为乙醇酸三聚体,提高pH值可促进PGA的降解。扩链剂和抗水解剂的存在提高了PGA的热稳定性和力学性能,延缓了PGA的降解速率。
中图分类号:
王兴国, 吕明福, 黄逸伦, 郭鹏, 高达利, 张师军. 聚乙醇酸高温降解性能研究及其调控方法[J]. 中国塑料, 2024, 38(8): 13-19.
WANG Xingguo, LV Mingfu, HUANG Yilun, GUO Peng, GAO Dali, ZHANG Shijun. Study on high temperature degradation performance of poly (glycolic acid) and its regulation method[J]. China Plastics, 2024, 38(8): 13-19.
样品名称 | 聚乙醇酸/% | 扩链剂ADR6488/% | 抗水解剂HyMax@210/% |
---|---|---|---|
PGA | 100 | 0 | 0 |
PGA⁃P | 100 | 0 | 0 |
PGA⁃C1 | 99.0 | 1.0 | 0 |
PGA⁃C2 | 98.0 | 2.0 | 0 |
PGA⁃A1 | 99.0 | 0 | 1.0 |
PGA⁃A2 | 98.0 | 0 | 2.0 |
样品名称 | 聚乙醇酸/% | 扩链剂ADR6488/% | 抗水解剂HyMax@210/% |
---|---|---|---|
PGA | 100 | 0 | 0 |
PGA⁃P | 100 | 0 | 0 |
PGA⁃C1 | 99.0 | 1.0 | 0 |
PGA⁃C2 | 98.0 | 2.0 | 0 |
PGA⁃A1 | 99.0 | 0 | 1.0 |
PGA⁃A2 | 98.0 | 0 | 2.0 |
样品名称 | 熔点/℃ | 熔融焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 结晶度/% | T1 %/℃ | T5 %/℃ |
---|---|---|---|---|---|---|---|
PGA | 222.9 | 90.2 | 196.0 | 81.1 | 47.2 | 317.3 | 345.3 |
PGA⁃1 d | 215.3 | 105.8 | 190.5 | 86.3 | 55.3 | 258.9 | 299.3 |
PGA⁃3 d | 214.4 | 102.3 | 186.0 | 83.0 | 53.5 | 181.0 | 232.3 |
PGA⁃5 d | 213.8 | 86.7 | 183.6 | 81.8 | 45.3 | 156.2 | 216.8 |
样品名称 | 熔点/℃ | 熔融焓/J·g-1 | 结晶温度/℃ | 结晶焓/J·g-1 | 结晶度/% | T1 %/℃ | T5 %/℃ |
---|---|---|---|---|---|---|---|
PGA | 222.9 | 90.2 | 196.0 | 81.1 | 47.2 | 317.3 | 345.3 |
PGA⁃1 d | 215.3 | 105.8 | 190.5 | 86.3 | 55.3 | 258.9 | 299.3 |
PGA⁃3 d | 214.4 | 102.3 | 186.0 | 83.0 | 53.5 | 181.0 | 232.3 |
PGA⁃5 d | 213.8 | 86.7 | 183.6 | 81.8 | 45.3 | 156.2 | 216.8 |
样品名称 | T1 %/℃ | T5 %/℃ | T50 %/℃ | Tmax/℃ | 最大质量损失速率/%·℃-1 |
---|---|---|---|---|---|
PGA | 317.3 | 345.3 | 395.9 | 406.6 | 2.26 |
PGA⁃P | 299.3 | 335.6 | 393.6 | 400.6 | 1.87 |
PGA⁃C1 | 325.4 | 345.0 | 395.6 | 404.3 | 2.31 |
PGA⁃C2 | 332.8 | 354.8 | 405.9 | 413.3 | 2.44 |
PGA⁃A1 | 301.7 | 335.9 | 390.3 | 403.3 | 2.05 |
PGA⁃A2 | 313.8 | 347.5 | 400.8 | 410.0 | 2.34 |
样品名称 | T1 %/℃ | T5 %/℃ | T50 %/℃ | Tmax/℃ | 最大质量损失速率/%·℃-1 |
---|---|---|---|---|---|
PGA | 317.3 | 345.3 | 395.9 | 406.6 | 2.26 |
PGA⁃P | 299.3 | 335.6 | 393.6 | 400.6 | 1.87 |
PGA⁃C1 | 325.4 | 345.0 | 395.6 | 404.3 | 2.31 |
PGA⁃C2 | 332.8 | 354.8 | 405.9 | 413.3 | 2.44 |
PGA⁃A1 | 301.7 | 335.9 | 390.3 | 403.3 | 2.05 |
PGA⁃A2 | 313.8 | 347.5 | 400.8 | 410.0 | 2.34 |
样品名称 | 2 h失重率/% | 4 h失重率/% | 6 h失重率/% |
---|---|---|---|
PGA | 16.1±1.3 | 63.7±2.1 | 93.5±2.5 |
PGA⁃P | 22.2±1.8 | 53.0±2.2 | 94.6±3.2 |
PGA⁃C1 | 10.5±1.5 | 51.3±1.8 | 86.1±2.9 |
PGA⁃C2 | 10.1±2.0 | 50.8±2.6 | 77.4±3.5 |
PGA⁃A1 | 14.3±1.6 | 50.4±2.1 | 96.5±3.0 |
PGA⁃A2 | 12.9±1.5 | 45.9±2.9 | 89.2±2.6 |
样品名称 | 2 h失重率/% | 4 h失重率/% | 6 h失重率/% |
---|---|---|---|
PGA | 16.1±1.3 | 63.7±2.1 | 93.5±2.5 |
PGA⁃P | 22.2±1.8 | 53.0±2.2 | 94.6±3.2 |
PGA⁃C1 | 10.5±1.5 | 51.3±1.8 | 86.1±2.9 |
PGA⁃C2 | 10.1±2.0 | 50.8±2.6 | 77.4±3.5 |
PGA⁃A1 | 14.3±1.6 | 50.4±2.1 | 96.5±3.0 |
PGA⁃A2 | 12.9±1.5 | 45.9±2.9 | 89.2±2.6 |
1 | 谭博雯, 孙朝阳, 计扬. 聚乙醇酸的合成、改性与性能研究综述[J]. 中国塑料, 2021, 35 (10): 137⁃146. |
TAN B W, SUN Z Y, JI Y. A review in synthesis and modification of poly(glycolic acid) [J]. China Plastics, 2021, 35 (10): 137⁃146. | |
2 | 钱振超, 王睿, 龚润东. 聚乙醇酸的合成及其在生物医学领域的研究进展[J]. 塑料科技, 2023,51(06):118⁃123. |
QIAN Z C, WANG R, GONG R D. Research progress in synthesis and biomedical applications of poly (glycolic acid) [J]. Plastics Science and Technology, 2023, 51(06):118⁃123. | |
3 | 叶林敏, 黄乐乐, 段新平, 等. 煤经合成气制可降解聚乙醇酸的技术进展[J]. 洁净煤技术, 2022, 28 (01): 110⁃121. |
YE L M, HUANG L L, DUAN X P,et al. Progress in the synthesis of degradable polyglycolic acid from coal via syngas [J]. Clean Coal Technology, 2022, 28 (01): 110⁃121. | |
4 | Budak K, Sogut O, Sezer U A. A review on synthesis and biomedical applications of polyglycolic acid[J]. Journal of Polymer Research, 2020, 27: 208. |
5 | 冯申,温亮,孙朝阳,等. PGA/PBAT复合材料的性能及应用研究[J]. 中国塑料, 2020, 34(11):36⁃40. |
FENG S, WEN L, SUN C Y, et al. Properties and applications of PGA/PBAT composites [J]. China Plastics, 2020, 34(11):36⁃40. | |
6 | Yoon S K, Chung D J. In vivo degradation studies of PGA⁃PLA block copolymer and their histochemical analysis for spinal⁃fixing application[J]. Polymers,2022,14(16): 3322. |
7 | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36 (04): 166⁃174. |
DONG L Q, XU F, WENG Y F. Research progress in modification and applications of poly(glycolic acid)[J]. China Plastics, 2022, 36(04): 166⁃174. | |
8 | Low Y J, Andriyana A, Ang B C, et al. Bioresorbable and degradable behaviors of PGA: Current state and future prospects[J]. Polymer Engineering and Science, 2020, 60(11):2 657⁃2 675. |
9 | Samantaray P K L, Haddleton Alastair, David M, et al. Poly (glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications[J]. Green Chemistry, 2020, 22(13):4 055⁃4 081. |
10 | Chen S, Zhang X, He M, et al. Degradation of PGA, prepared by reactive extrusion polymerization, in water, humid, and dry air, and in a vacuum[J]. Journal of Materials Research, 2020, 35(14):1 846⁃1 856. |
11 | GAO J F, WANG K, Xu N, et al. Influence of a multiple epoxy chain extender on the rheological behavior, crystallization, and mechanical properties of polyglycolic acid[J]. Polymers, 2023, 15(13): 2764. |
12 | Yu C, Bao J, Xie Q, et al. Crystallization behavior and crystalline structural changes of poly (glycolic acid) investigated via temperature⁃variable WAXD and FTIR analysis[J]. Cryst Eng Comm, 2016, 18(40):7 894⁃7 902. |
13 | Shawe S, Buchanan F, Harkin⁃Jones E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA)[J]. Journal of Materials Science, 2006, 41(15):4 832⁃4 838. |
14 | Hu X, Hu G, Crawford K, et al. Comparison of the growth and degradation of poly(glycolic acid) and poly(ε⁃caprolactone) brushes[J]. Polymer Chemistry, 2013,51(21):4 643⁃4 649. |
15 | Jong S J D, Ruiz⁃Arias E, Rijkers D T S, et al. New insights into the hydrolytic degradation of poly(lactic acid): Participation of the alochol terminus[J]. Polymer, 2001(42):2 795⁃2 802. |
16 | Sun X, Chen L, Wang R, et al. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti⁃hydrolysis agent[J]. Journal of Applied Polymer Science, 2022, 139(25):e52398. |
17 | Iñiguez⁃Franco F, Auras R, Ahmed J, et al. Control of hydrolytic degradation of poly (lactic acid) by incorporation of chain extender: from bulk to surface erosion[J]. Polymer Testing, 2018, 67:190⁃196. |
18 | Yang L, Chen X, Jing X. Stabilization of poly (lactic acid) by polycarbodiimide [J]. Polymer Degradation and Stability, 2008, 93(10):1 923⁃1 929. |
19 | 陈书亮, 张鑫, 何明阳, 等. 抗水解剂对反应性挤出PGA降解行为的影响[J]. 现代塑料加工应用, 2020, 32(04): 1⁃4. |
CHEN S L, ZHANG X, HE M Y,et al. Effect of antihydrolytic agents on degradation behavior of PGA prepared by reactive extrusion polymerization[J]. Modern Plastics Processing and Applications,2020, 32 (04): 1⁃4. |
[1] | 骆佳伟, 周炳, 王洪学, 贾钦. 扩链条件对聚丁二酸丁二酯⁃共⁃对苯二甲酸丁二酯/滑石粉共混物性能的影响[J]. 中国塑料, 2024, 38(6): 1-11. |
[2] | 牛荷, 吕明福, 张宗胤, 徐耀辉, 许巍, 张师军, 郭鹏. 聚乙醇酸加工技术中助剂的应用进展[J]. 中国塑料, 2024, 38(6): 105-110. |
[3] | 沈丹彤, 薛雨亭, 李荣杰, 徐芳, 翁云宣. 聚乳酸基水性聚氨酯的制备及其在合成革中的应用研究[J]. 中国塑料, 2024, 38(4): 19-25. |
[4] | 孙乙博, 刘亚宁, 芦浩凡, 陈士宏, 王向东, 武丽丽. PA66扩链改性及其超临界CO2微孔发泡行为研究[J]. 中国塑料, 2023, 37(12): 41-46. |
[5] | 马超, 马兰荣, 魏辽, 尹慧博, 林祥. 聚乙醇酸材料的加工改性及其水下降解特性的研究进展[J]. 中国塑料, 2022, 36(9): 74-84. |
[6] | 林健辉, 卢嘉慧, 吴欣颖, 范雪滢, 邓桂荣, 高亮, 梅承芳, 杨永刚. 受控堆肥条件下可降解材料最终需氧生物分解能力测定的不确定度评定研究[J]. 中国塑料, 2022, 36(9): 140-147. |
[7] | 吴雄杰, 朱东波, 孙江波, 高龙美, 储雨, 程劲松, 谢爱迪. 聚乙烯/纳米硫酸钙粉体复合软包装应用性能研究[J]. 中国塑料, 2022, 36(6): 10-15. |
[8] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[9] | 谭博雯, 孙朝阳, 计扬. 聚乙醇酸的合成、改性与性能研究综述[J]. 中国塑料, 2021, 35(10): 137-146. |
[10] | 祖钰, 任亚男, 胡晶. 聚乳酸/聚(3⁃羟基丁酸⁃co⁃3⁃羟基戊酸酯)共混材料3D打印线材改性研究[J]. 中国塑料, 2020, 34(7): 36-43. |
[11] | 冯申, 温亮, 孙朝阳, 计扬. PGA/PBAT复合材料的性能及应用研究[J]. 中国塑料, 2020, 34(11): 36-40. |
[12] | 李鑫 田志峰 赵彩霞 柏祥 李锦春. 热塑性可生物降解PBSeT共聚酯的合成及性能研究[J]. 中国塑料, 2019, 33(4): 72-80. |
[13] | 王金泳 王兴旺. 无卤阻燃剂二乙基次磷酸铝的热降解和阻燃机理[J]. 中国塑料, 2019, 33(2): 82-85,130. |
[14] | 韩硕, 王向东, 陈士宏, 姜璨, 王亚桥. 环氧扩链剂增容PET/PA6共混物对结晶与流变性能的影响[J]. 中国塑料, 2019, 33(10): 23-27. |
[15] | 桑练勇 晏华 胡志德 代军 薛明. 海水环境下聚碳酸亚丙酯/聚乳酸共混物的降解性能研究[J]. 中国塑料, 2018, 32(08): 122-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||