中国塑料 ›› 2025, Vol. 39 ›› Issue (7): 63-71.DOI: 10.19491/j.issn.1001-9278.2025.07.011

• 加工与应用 • 上一篇    下一篇

聚偏氟乙烯剪切变形过程大分子结构演变分子动力学模拟研究

孙悦颖, 汤小龙, 邹忠毅, 王梦桥, 刘继涛()   

  1. 济南大学化学化工学院,山东省氟化学化工材料重点实验室,济南 250022
  • 收稿日期:2024-07-21 出版日期:2025-07-26 发布日期:2025-07-22
  • 通讯作者: 刘继涛(1983—),男,博士,副教授,主要从事聚合物成型加工多尺度模拟理论与实验研究,chm_liujt@ujn.edu.cn
    E-mail:chm_liujt@ujn.edu.cn

Study on molecular dynamics simulation for evolution of macromolecular structure during shear deformation of polyvinylidene fluoride

SUN Yueying, TANG Xiaolong, ZOU Zhongyi, WANG Mengqiao, LIU Jitao()   

  1. Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials,School of Chemistry and Chemical Engineering,University of Jinan,Jinan 250022,China
  • Received:2024-07-21 Online:2025-07-26 Published:2025-07-22
  • Contact: LIU Jitao E-mail:chm_liujt@ujn.edu.cn

摘要:

为揭示聚偏氟乙烯剪切过程的大分子结构演变微观机理,采用分子动力学方法模拟研究了聚偏氟乙烯的剪切变形过程,探究了链长、混合聚合度和剪切应变速率对聚偏氟乙烯剪切变形过程的影响,分析了聚偏氟乙烯剪切变形过程中的应力⁃应变关系、末端距、均方位移及径向分布函数的变化规律。结果表明,聚偏氟乙烯剪切变形过程的应力随应变的增加先增加后降低最后趋于平稳,依次出现弹性变形、应力屈服和应力软化3个阶段;链长越长,分子链的解缠越难,需要的剪切应力越大,分子链的末端距变化量越大;混合聚合度的聚偏氟乙烯剪切变形过程受长链分子的影响为主,剪切模量增加,末端距的变化受链长和分子链相对位置影响;剪切应变速率越大,剪切变形需要的应力越大,末端距变化越大,分子链的解缠越困难。

关键词: 聚偏氟乙烯, 剪切变形, 微观结构演变, 分子动力学模拟

Abstract:

This study employed molecular dynamics simulations to investigate the microstructural evolution of polyvinylidene fluoride (PVDF) during shear deformation. The effects of chain length, mixed polymerization degree, and shear strain rate on the shear behavior of PVDF were systematically examined, with analysis focusing on stress⁃strain response, end⁃to⁃end distance, mean square displacement, and radial distribution function. Results revealed that the shear deformation process exhibited three distinct stages: elastic deformation, stress yield, and stress softening. Longer polymer chains demonstrated greater resistance to unwinding, requiring higher shear stresses and exhibiting more pronounced changes in end⁃to⁃end distance. For systems with mixed polymerization degrees, the shear response was predominantly governed by long⁃chain molecules, leading to increased shear modulus and chain⁃length⁃dependent variations in end⁃to⁃end distance. Furthermore, higher strain rates necessitated greater shear stresses, induced larger changes in molecular conformation, and impeded chain unwinding. These findings provide molecular⁃level insights into the shear⁃induced structural evolution of PVDF, offering valuable guidance for optimizing its processing and performance.

Key words: polyvinylidene fluoride, shear deformation, microstructural evolution, molecular dynamics simulation

中图分类号: