
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (10): 137-146.DOI: 10.19491/j.issn.1001-9278.2021.10.022
收稿日期:
2021-01-13
出版日期:
2021-10-26
发布日期:
2021-10-27
作者简介:
谭博雯(1988—),女,博士,从事生物可降解高分子复合材料研究,
TAN Bowen(), SUN Zhaoyang, JI Yang
Received:
2021-01-13
Online:
2021-10-26
Published:
2021-10-27
摘要:
综述了聚乙醇酸(PGA)的合成方法及其单体的制备方法,详细介绍了PGA的物理性能、力学性能、热性能和降解性能,并将其与其他传统塑料进行了对比分析;介绍了PGA的工业化发展进程;阐述了近年来PGA改性方法的研究进展;最后,对PGA加工和改性的技术难点及发展机遇进行了讨论和展望。
中图分类号:
谭博雯, 孙朝阳, 计扬. 聚乙醇酸的合成、改性与性能研究综述[J]. 中国塑料, 2021, 35(10): 137-146.
TAN Bowen, SUN Zhaoyang, JI Yang. A Review in Synthesis and Modification of Poly(glycolic acid)[J]. China Plastics, 2021, 35(10): 137-146.
材料 | 玻璃化转变 温度/℃ | 熔融温度/ ℃ | 拉伸强度/ MPa | 弹性模量/ GPa | 断裂伸长率/ % | 弯曲强度/ MPa | 弯曲模量/ GPa |
---|---|---|---|---|---|---|---|
PGA | 35~40 | 220~230 | 115 | 7 | 16.4 | 222 | 7.8 |
PLA[ | 57~58 | 140~152 | 53 | 2.4 | 5 | 92 | 3.4 |
聚羟基烷酸酯(PHA)[ | 2~5 | 170 | 20~25 | 1~2 | 4~7 | 33~40 | 1.3~2 |
聚己二酸对苯二甲酸丁二酯(PBAT)[ | -30 | 110~120 | 20 | 0.08 | >900 | 3.1 | 0.08 |
PCL[ | -60 | 60 | 14.6 | 0.4 | 600~900 | 23.4 | 0.6 |
PET[ | 69 | 255 | 47 | 3.5 | 2~83 | 118 | 4 |
聚丙烯[ | -20 | 175 | 31 | 1.5~2 | 80~350 | 40 | 1.5 |
聚苯乙烯[ | 85 | 105~110 | 45 | 3~3.5 | 4 | 70 | 2.5 |
聚酰胺6[ | 60 | 220 | 56~90 | 2 | 70 | 77.2 | 1.3 |
材料 | 玻璃化转变 温度/℃ | 熔融温度/ ℃ | 拉伸强度/ MPa | 弹性模量/ GPa | 断裂伸长率/ % | 弯曲强度/ MPa | 弯曲模量/ GPa |
---|---|---|---|---|---|---|---|
PGA | 35~40 | 220~230 | 115 | 7 | 16.4 | 222 | 7.8 |
PLA[ | 57~58 | 140~152 | 53 | 2.4 | 5 | 92 | 3.4 |
聚羟基烷酸酯(PHA)[ | 2~5 | 170 | 20~25 | 1~2 | 4~7 | 33~40 | 1.3~2 |
聚己二酸对苯二甲酸丁二酯(PBAT)[ | -30 | 110~120 | 20 | 0.08 | >900 | 3.1 | 0.08 |
PCL[ | -60 | 60 | 14.6 | 0.4 | 600~900 | 23.4 | 0.6 |
PET[ | 69 | 255 | 47 | 3.5 | 2~83 | 118 | 4 |
聚丙烯[ | -20 | 175 | 31 | 1.5~2 | 80~350 | 40 | 1.5 |
聚苯乙烯[ | 85 | 105~110 | 45 | 3~3.5 | 4 | 70 | 2.5 |
聚酰胺6[ | 60 | 220 | 56~90 | 2 | 70 | 77.2 | 1.3 |
材料 | 氧气渗透系数/cm·cm3·i(×10-7 m2·d·Pa)-1 | 水蒸气渗透系数/g·cm·i(×10-3 m2·d)-1 | 二氧化碳渗透系数/cm·cm3·i(×10-7 m2·d·Pa)-1 | 引用文献 |
---|---|---|---|---|
PGA | 0.14 | 19.5 | 74 | [ |
PLA | 148.2~163.8 | 702~858 | 714~780 | [ |
PHA | — | 234 | — | [ |
PET | 11.7~23.4 | 39~109 | 58.5~97.5 | [ |
高密度聚乙烯 | 507~722 | 12~16 | 1 560~2 730 | [ |
聚丙烯 | 585~3 820 | 20~27 | 585~2 535 | [ |
聚酰胺6 | 7.8~11.7 | 624~897 | 39~47 | [ |
EVOH | 7.8~10.1 | 55~254 | — | [ |
高抗冲聚苯乙烯 | 1 170~1 560 | 39 | — | [ |
聚氯乙烯 | 15.6~117 | 39~195 | 16~195 | [ |
材料 | 氧气渗透系数/cm·cm3·i(×10-7 m2·d·Pa)-1 | 水蒸气渗透系数/g·cm·i(×10-3 m2·d)-1 | 二氧化碳渗透系数/cm·cm3·i(×10-7 m2·d·Pa)-1 | 引用文献 |
---|---|---|---|---|
PGA | 0.14 | 19.5 | 74 | [ |
PLA | 148.2~163.8 | 702~858 | 714~780 | [ |
PHA | — | 234 | — | [ |
PET | 11.7~23.4 | 39~109 | 58.5~97.5 | [ |
高密度聚乙烯 | 507~722 | 12~16 | 1 560~2 730 | [ |
聚丙烯 | 585~3 820 | 20~27 | 585~2 535 | [ |
聚酰胺6 | 7.8~11.7 | 624~897 | 39~47 | [ |
EVOH | 7.8~10.1 | 55~254 | — | [ |
高抗冲聚苯乙烯 | 1 170~1 560 | 39 | — | [ |
聚氯乙烯 | 15.6~117 | 39~195 | 16~195 | [ |
材料 | 降解时间/月 | 参考文献 |
---|---|---|
PGA | 1.5~3 | [ |
左旋聚乳酸(PLLA) | 6~24 | [ |
外消旋聚乳酸(PDLLA) | 12~16 | [ |
聚乳酸乙醇酸(PLGA) | 1~2(LA∶GA质量比50∶50) | [ |
4~5(LA∶GA质量比75∶25) | ||
5~6(LA∶GA质量比85∶15) | ||
PCL | >24 | [ |
材料 | 降解时间/月 | 参考文献 |
---|---|---|
PGA | 1.5~3 | [ |
左旋聚乳酸(PLLA) | 6~24 | [ |
外消旋聚乳酸(PDLLA) | 12~16 | [ |
聚乳酸乙醇酸(PLGA) | 1~2(LA∶GA质量比50∶50) | [ |
4~5(LA∶GA质量比75∶25) | ||
5~6(LA∶GA质量比85∶15) | ||
PCL | >24 | [ |
1 | QUALMAN D. Global Plastics Production, 1917 to 2050[EB/OL]. (2017⁃12⁃17)[2021⁃01⁃13]. . |
2 | EXCELL C, SALCEDO⁃LA V C, WORKER J, MOSES. E. Legal Limits on Single⁃Use Plastics and Microplastics: A Global Review of National Laws and Regulations[R]. Geneva :United Nation Environmnet Programme, 2018:1⁃113. |
3 | CHU C C. 11⁃Materials for Absorbable and Nonabsorbable Surgical Sutures[M]. Sawton: Woodhead Publishing, 2013: 275⁃334. |
4 | MA Z, ZHAO N, XIONG C. Degradation and Miscibility of Poly(DL⁃lactic acid)/Poly(glycolic acid) Composite Films: Effect of Poly(DL⁃lactic⁃co⁃glycolic acid)[J]. Bulletin of Materials Science, 2012, 35(4): 575⁃578. |
5 | TAKAYAMA T, DAIGAKU Y, ITO H, et al. Mechanical Properties of Bio⁃absorbable PLAPGA Fiber⁃reinforced Composites[J]. Journal of Mechanical Science and Technology, 2014, 28(10): 4 151⁃4 154. |
6 | SALUSJÄRVI L, HAVUKAINEN S, KOIVISTOINEN O, et al. Biotechnological Production of Glycolic Acid and Ethylene Glycol: Current State and Perspectives[J]. Applied Microbiology and Biotechnology, Applied Microbiology and Biotechnology, 2019, 103(6): 2 525⁃2 535. |
7 | HE Y, XU J, SU J, et al. Bioproduction of Glycolic Acid from Glycolonitrile with a New Bacterial Isolate of Alcaligenes sp. ECU0401[J]. Applied Biochemistry and Biotechnology, 2010, 160(5): 1 428⁃1 440. |
8 | GÄDDA T M, PIRTTIMAA M M, KOIVISTOINEN O, et al. The Industrial Potential of Bio⁃based Glycolic Acid and Polyglycolic Acid[J]. Appita Journal, 2014, 67(1): 12. |
9 | LAPPORTE S, TOLAND W. Glycolic Acid Production: US, US3754028[P]. 1972⁃08⁃21. |
10 | JOHN L D. Process for Manufacture of Glycolic Acid: US, US2152852[P]. 1936⁃12⁃31. |
11 | DICOSIMO R, PAYNE M S, PANOVA A, et al. Enzymatic Prodcution of Glycolic Acid: US, US7198927[P]. 2007⁃04⁃03. |
12 | NIAOUNAKIS M. Chapter1⁃Introduction Biopolymers: Processing and Products[M]. Waltham: William Andrew Publishing, 2015: 1⁃77. |
13 | SAMANTARAY P K, LITTLE A, HADDLETON D M, et al. Poly(glycolic acid) (PGA): A Versatile Building Block Expanding High Performance and Sustainable Bioplastic Applications[J]. Green Chemistry, 2020, 22(13): 4 055⁃4 081. |
14 | AYYOOB M, LEE D H, KIM J H, et al. Synthesis of Poly(glycolic acids) via Solution Polycondensation and Investigation of Their Thermal Degradation Behaviors[J]. Fibers and Polymers, 2017, 18(3): 407⁃415. |
15 | CHUJO K, KOBAYASHI H, SUZUKI J, et al. Physical and Chemical Characteristics Polyglycolide[J]. Die Makromolekulare Chemie, 1967, 100: 267⁃270. |
16 | SINGH V, TIWARI M. Structure⁃processing⁃property Relationship of Poly(glycolic acid) for Drug Delivery Systems 1: Synthesis and Catalysis[J]. International Journal of Polymer Science, 2010: 652719. |
17 | TAKAHASHI K, TANIGUCHI I, MIYAMOTO M, et al. Melt/Solid Polycondensation of Glycolic Acid to Obtain High⁃molecular⁃weight Poly(glycolic acid)[J]. Polymer, 2000, 41(24): 8 725⁃8 728. |
18 | SCHMIDT C, BEHL M, LENDLEIN A, et al. Synthesis of High Molecular Weight Polyglycolide in Supercritical Carbon Dioxide[J]. RSC Advances, 2014, 4(66): 35 099⁃35 105. |
19 | BRATTON D, BROWN M M, HOWDLE S. Synthesis of Poly(glycolide) in Supercritical Carbon Dioxide in the Presence of A Hydrocarbon Stabiliser[J]. Chemical Communications, 2004(7): 808⁃809. |
20 | GAUTIER E, FUERTES P, CASSAGNAU P, et al. Synthesis and Rheology of Biodegradable Poly(glycolic acid) Prepared by Melt Ring⁃opening Polymerization of Glycolide[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2009, 47(5): 1 440⁃1 449. |
21 | LU Y, SCHMIDT C, BEUERMANN S. Fast Synthesis of High‐Molecular‐Weight Polyglycolide Using Diphenyl Bismuth Bromide as Catalyst[J]. Macromolecular Chemistry & Physics, 2015, 216: 395⁃399. |
22 | JEM K J, TAN B. The Development and Challenges of Poly(lactic acid) and Poly(glycolic acid)[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60⁃70. |
23 | LEE S, HONGO C, NISHINO T. Crystal Modulus of Poly(glycolic acid) and Its Temperature Dependence[J]. Macromolecules, 2017, 50(13): 5 074⁃5 079. |
24 | JEM K J, VAN DER POL J F, DE VOS S. Microbial Lactic Acid, Its Polymer Poly(lactic acid), and Their Industrial Applications[M]. Heidelberg: Springer, 2010: 323⁃346. |
25 | BIRON M. Material Selection for Thermoplastic Parts: Practical and Advanced Information[M]. New York: William Andrew, 2015: 625⁃626. |
26 | BUGNICOURT E, CINELLI P, LAZZERI A, et al. Polyhydroxyalkanoate(PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging[J]. Express Polymer Letters, 2014, 8(11): 791⁃808. |
27 | AL⁃ITRY R, LAMNAWAR K, MAAZOUZ A. Improvement of Thermal Stability, Rheological and Mechanical Properties of PLA, PBAT and Their Blends by Reactive Extrusion with Functionalized Epoxy[J]. Polymer Degradation and Stability, 2012, 97(10): 1 898⁃1 914. |
28 | MIDDLETON J C R, TIPTON A J. Synthetic Biodegradable Polymers as Orthopedic Devices[J]. Biomaterials, 2000, 21(23): 2 335⁃2 346. |
29 | DZIADEK M, MENASZEK E, ZAGRAJCZUK B, et al. New Generation Poly(ε⁃caprolactone) Gel⁃derived Bioactive Glass Composites for Bone Tissue Engineering Part I. Material properties[J]. Materials Science and Engineering C, 2015, 56: 9⁃21. |
30 | PATRÍCIO T, BÁRTOLO P. Thermal Stability of PCL/PLA Blends Produced by Physical Blending Process[J]. Procedia Engineering, 2013,59: 292⁃297. |
31 | FARHOODI M, DADASHI S, MOUSAVI M, et al. Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites[J]. Polymer Korea, 2012, 36(6):745⁃755. |
32 | TELI M D, KALE R D. Polyester Nanocomposite Fibers with Improved Flame Retardancy and Thermal Stability[J]. Polymer Engineering and Science, 2012, 52(5): 1 148⁃1 154. |
33 | DARDMEH N, KHOSROWSHAHI A, ALMASI H, et al. Study on Effect of the Polyethylene Terephthalate/Nanoclay Nanocomposite Film on the Migration of Terephthalic Acid into the Yoghurt Drinks Simulant[J]. Journal of Food Process Engineering, 2015, 40(1): 1⁃8. |
34 | MADDAH H A. Polypropylene as a Promising Plastic: A Review[J]. American Journal of Polymer Science, 2016, 6(1): 1⁃11. |
35 | TAŞDEMIR M, GÜLSOY H Ö. Mechanical Properties of Polymers Filled with Iron Powder[J]. International Journal of Polymeric Materials, 2008, 57(3): 258⁃265. |
36 | WAHIT M U, HASSAN A, ISHAK Z A M, et al. Toughening of Polyamide 6 Nanocomposites: Effect of Organoclay and Maleic Anhydride Grafted Polyethylene Octene Loading on Morphology and Mechanical Properties[J]. International Journal of Mechanical and Materials Engineering, 2009, 4(1): 1⁃10. |
37 | Kuredux. Polyglycolic Acid (PGA) Technical Guidebook[EB/OL]. (2011⁃11⁃01)[2019⁃12⁃01]. |
38 | ZHANG Z, ORTIZ O, GOYAL R, et al. Biodegradable Polymers[M].Fourth Edition. New York: Academic Press, 2014: 441⁃473. |
39 | AGRAWAL C M, NIEDERAUER G G, ATHANASIOU K A. Fabrication and Characterisaiton of PLA⁃PGA Orthooedic Implants[J]. Tissue Engineering, 1995, 1(3): 241⁃252. |
40 | GENTILE P, CHIONO V, CARMAGNOLA I, et al. An Overview of Poly(lactic⁃co⁃glycolic) Acid (PLGA)⁃based Biomaterials for Bone Tissue Engineering[J]. International Journal of Molecular Sciences, 2014, 15(3): 3 640⁃3 659. |
41 | WENG Y X, WANG X L, WANG Y Z. Biodegradation Behavior of PHAs With Different Chemical Structures Under Controlled Composting Conditions[J]. Polymer Testing, 2011, 30(4): 372⁃380. |
42 | VIEIRA A C, VIEIRA J C, GUEDES R M, et al. Experimental Degradation Chararcterization of PLA⁃PCL, PGA⁃PCL, PDO AND PGA fibers[J]. Materials Science Forum, 2010, 636(637): 825⁃832. |
43 | SHAWE S, BUCHANAN F, HARKIN⁃JONES E, et al. A Study on the Rate of Degradation of the Bioabsorbable Polymer Polyglycolic Acid (PGA)[J]. Journal of Materials Science, 2006, 41(15): 4 832⁃4 838. |
44 | CHU C C. Hydrolytic Degradation of Polyglycolic Acid: Tensile Strength and Crystallinity Study[J]. Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the Interna, 1981(4): 1 727⁃1 734. |
45 | HURRELL S, MILROY G E, CAMERON R E. The Degradation of Polyglycolide in Water and Deuterium Oxide. Part I: The Effect of Reaction Rate[J]. Polymer, 2003, 44(5): 1 421⁃1 424. |
46 | DE OCA H M, FARRAR D F, WARD I M. Degradation Studies on Highly Oriented Poly(glycolic acid) Fibres with Different Lamellar Structures[J]. Acta Biomaterialia, 2011, 7(4): 1 535⁃1 541. |
47 | MILROY G E, SMITH R W, HOLLANDS R, et al. The Degradation of Polyglycolide in Water and Deuterium Oxide. Part II: Nuclear Reaction Analysis and Magnetic Resonance Imaging of Water Distribution[J]. Polymer, 2003, 44(5): 1 425⁃1 435. |
48 | HURRELL S, CAMERON R. Polyglycolide: Degradation and Drug Release. Part I: Changes in Morphology During Degradation[J]. Journal of Materials Science: Materials in Medicine, 2001, 12(9): 811⁃816. |
49 | HURRELL S, MILROY G, CAMERON R. The Distribution of Water in Degrading Polyglycolide. Part I: Sample Size and Drug Release[J]. Journal of Materials Science: Materials in Medicine, 2003, 14(5): 457⁃464. |
50 | MOHAMMADIKHAH R, ROVSHANDEH J M. Thermal Degradation and Kinetic Analysis of Pure Polyglycolic Acid in Presence of Humid Air[J]. Iranian Polymer Journal, 2008, 17(9): 691⁃701. |
51 | CUI A, XUE S, HE M, et al. The Effects on Thermal Stability of Polyglycolic Acid by Adding Dihydrazide Metal Chelators[J]. Polymer Degradation and Stability, 2017, 137: 238⁃243. |
52 | LI J, STAYSHICH R M, MEYER T Y. Exploiting Sequence to Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers[J]. Journal of the American Chemical Society, 2011, 133(18): 6 910⁃6 913. |
53 | AJIOKA M, SUIZU H, HIGUCHI C, et al. Aliphatic Polyesters and Their Copolymers Synthesized Through Direct Condensation Polymerization[J]. Polymer Degradation and Stability, 1998, 59(1/3): 137⁃143. |
54 | CHOI S Y, PARK S J, KIM W J, et al. One⁃step Fermentative Production of Poly(lactate⁃co⁃glycolate) from Carbohydrates in Escherichia Coli[J]. Nature Biotechnology, 2016, 34(4): 435⁃440. |
55 | LEE S H, KIM B S, KIM S H, et al. Elastic Biodegradable Poly(glycolide⁃co⁃caprolactone) Scaffold for Tissue Engineering[J]. Journal of Biomedical Materials Research⁃Part A, 2003, 66(1): 29⁃37. |
56 | CAI Q, BEI J, WANG S. Synthesis and Properties of ABA⁃type Triblock Copolymers of Poly(glycolide⁃co⁃caprolactone)(A) and Poly(ethylene glycol)(B)[J]. Polymer, 2002, 43(13): 3 585⁃3 591. |
57 | CHEN G, USHIDA T, TATEISHI T. A Hybrid Network of Synthetic Polymer Mesh and Collagen Sponge[J]. Chemical Communications, 2000, 16: 1 505⁃1 506. |
58 | LEE K, YOON K R, WOO S I, et al. Surface Modification of Poly(glycolic acid) (PGA) for Biomedical Applications[J]. Journal of pharmaceutical sciences, 2003, 92(5): 933⁃937. |
59 | SPEARMAN S S, RIVERO I V, ABIDI N. Influence of Polycaprolactone/Polyglycolide Blended Electrospun Fibers on the Morphology and Mechanical Properties of Polycaprolactone[J]. Journal of Applied Polymer Science, 2014, 131(9): 1⁃5. |
60 | NAKAJIMA J, KATO T, MATSUKURA Y. Multilayer Container of Polyglycolic Acid and Polyester and Blow Moulding Produciton Process: US, US7713464B2[P]. 2002⁃11⁃01. |
61 | SATO T, YAMANE K, WAKABAYASHI J, et al. Multilayer Sheet Made of Polyglycolic Acid Resin: US, US20080069988A1[P]. 2005⁃06⁃20. |
[1] | 朱子轩, 刘海芬, 范家钊, 李华锋, 王力新. 光伏背板粘接材料和共挤粘接技术研究进展[J]. 中国塑料, 2022, 36(7): 174-186. |
[2] | 冀峰, 龚炜华, 张艳, 罗水源, 于庆雨, 朱君秋, 郭江彬. 超临界二氧化碳釜压发泡法制备生物可降解PBAT发泡颗粒[J]. 中国塑料, 2022, 36(5): 122-126. |
[3] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[4] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[5] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[6] | 曹志峰, 赵立品, 何汀, 马百钧. 五层共挤阻隔膜的制备与性能研究[J]. 中国塑料, 2022, 36(3): 64-68. |
[7] | 黄国桃, 桂源, 李玉才, 吴鑫, 冯新星, 邓建平, 王操, 潘凯. EVA/聚酰胺弹性体微孔发泡材料的制备与性能表征[J]. 中国塑料, 2021, 35(9): 1-7. |
[8] | 陆伟鑫, 陆冲, 王斌, 胡晶, 吴菁菁, 周秦鹏. 环氧改性剂对PA6/EVOH共混物性能的影响[J]. 中国塑料, 2021, 35(9): 8-14. |
[9] | 陈全贵, 张美林, 王孝军, 杨杰. 半芳香族聚酰胺PA6T及其PTFE复合材料的摩擦磨损性能研究[J]. 中国塑料, 2021, 35(7): 1-11. |
[10] | 张婷, 张彩丽, 宋鑫宇, 翁云宣. PBAT薄膜的制备及应用研究进展[J]. 中国塑料, 2021, 35(7): 115-125. |
[11] | 倪佳, 段凯歌, 朱辉, 胡明远, 程志, 于东明. 新型EVOH/PE⁃RT合金包覆PE⁃RT双层阻氧管的制备及性能研究[J]. 中国塑料, 2021, 35(7): 32-35. |
[12] | 李璐, 刘飞翔, 罗慧玲, 陈国华. 石墨烯复合浆料应用于ABS塑料电镀前表面处理[J]. 中国塑料, 2021, 35(6): 40-45. |
[13] | 孟浩, 袁美霞, 华明. ABS的3D打印制品表面质量研究[J]. 中国塑料, 2021, 35(6): 74-79. |
[14] | 郭金强, 王富玉, 张玉霞. 高阻隔高分子材料研究进展[J]. 中国塑料, 2021, 35(5): 146-155. |
[15] | 张静, 李小晴, 周海瑛, 江文正, 钟金环, 李文珠, 张文标. PP/EVA复合发泡材料的制备与性能研究[J]. 中国塑料, 2021, 35(3): 23-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||