
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (4): 6-14.DOI: 10.19491/j.issn.1001-9278.2022.04.002
李素圆1, 刘会鹏1, 龚舜1, 黄国桃1, 李玉才2, 吴鑫2, 邓建平1(), 潘凯1(
)
收稿日期:
2021-12-09
出版日期:
2022-04-26
发布日期:
2022-04-24
通讯作者:
邓建平(1969—),男,教授,从事手性高分子设计与制备研究工作,dengjp@mail.buct.edu.cn基金资助:
LI Suyuan1, LIU Huipeng1, GONG Shun1, HUANG Guotao1, LI Yucai2, WU Xin2, DENG Jianping1(), PAN Kai1(
)
Received:
2021-12-09
Online:
2022-04-26
Published:
2022-04-24
Contact:
DENG Jianping, PAN Kai
E-mail:dengjp@mail.buct.edu.cn;pankai@mail.buct.edu.cn;dengjp@mail.buct.edu.cn
摘要:
研究了发泡剂用量对热塑性聚酰胺弹性体(TPAE)改性乙烯?醋酸乙烯共聚物(EVA)复合发泡材料(EVA/TPAE)的影响,并在最佳发泡剂用量下探究了EVA中TPAE的添加量对EVA/TPAE复合发泡材料发泡性能及力学性能的相关影响。结果表明,EVA/TPAE=100∶5(质量比,下同)时,EVA/TPAE共混物/发泡剂=100∶3的条件下,EVA/TPAE复合发泡材料体系发泡更完全,泡孔尺寸更均匀,且能满足目前发泡鞋材要求的力学强度;在该发泡剂用量下,仅添加少量的TPAE(EVA/TPAE=100∶5)就可获得综合性能良好的EVA/TPAE复合发泡材料,具有潜在的市场应用前景。
中图分类号:
李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14.
LI Suyuan, LIU Huipeng, GONG Shun, HUANG Guotao, LI Yucai, WU Xin, DENG Jianping, PAN Kai. Preparation and characterization of EVA foaming materials modified with thermoplastic polyamide elastomer[J]. China Plastics, 2022, 36(4): 6-14.
样品编号 | EVA/TPAE含量/份 | AC含量/份 | 发泡助剂含量/份 |
---|---|---|---|
EVA/TPAE (5)⁃AC (1) | 100 [EVA/TPAE (5)] | 1 | 9 |
EVA/TPAE (5)⁃AC (2) | 100 [EVA/TPAE (5)] | 2 | 9 |
EVA/TPAE (5)⁃AC (3) | 100 [EVA/TPAE (5)] | 3 | 9 |
EVA/TPAE (10)⁃AC (3) | 100 [EVA/TPAE (10)] | 3 | 9 |
EVA/TPAE (15)⁃AC (3) | 100 [EVA/TPAE (15)] | 3 | 9 |
样品编号 | EVA/TPAE含量/份 | AC含量/份 | 发泡助剂含量/份 |
---|---|---|---|
EVA/TPAE (5)⁃AC (1) | 100 [EVA/TPAE (5)] | 1 | 9 |
EVA/TPAE (5)⁃AC (2) | 100 [EVA/TPAE (5)] | 2 | 9 |
EVA/TPAE (5)⁃AC (3) | 100 [EVA/TPAE (5)] | 3 | 9 |
EVA/TPAE (10)⁃AC (3) | 100 [EVA/TPAE (10)] | 3 | 9 |
EVA/TPAE (15)⁃AC (3) | 100 [EVA/TPAE (15)] | 3 | 9 |
样品 | 发泡剂用量/份 | ||
---|---|---|---|
EVA/TPAE (5)⁃AC (1) | 1 | 71 | 6.82×106 |
EVA/TPAE (5)⁃AC (2) | 2 | 60 | 2.22×107 |
EVA/TPAE (5)⁃AC (3) | 3 | 55 | 3.44×107 |
样品 | 发泡剂用量/份 | ||
---|---|---|---|
EVA/TPAE (5)⁃AC (1) | 1 | 71 | 6.82×106 |
EVA/TPAE (5)⁃AC (2) | 2 | 60 | 2.22×107 |
EVA/TPAE (5)⁃AC (3) | 3 | 55 | 3.44×107 |
样品 | 发泡剂 用量/份 | ||
---|---|---|---|
EVA/TPAE (5)⁃AC (3) | 3 | 55 | 3.44×107 |
EVA/TPAE (10)⁃AC (3) | 64 | 2.69×107 | |
EVA/TPAE (15)⁃AC (3) | 69 | 2.29×107 |
样品 | 发泡剂 用量/份 | ||
---|---|---|---|
EVA/TPAE (5)⁃AC (3) | 3 | 55 | 3.44×107 |
EVA/TPAE (10)⁃AC (3) | 64 | 2.69×107 | |
EVA/TPAE (15)⁃AC (3) | 69 | 2.29×107 |
1 | JIN F L, ZHAO M, PARK M, et al. Recent Trends of foaming in polymer processing: a review[J]. Polymers, 2019, 11(6): 953. |
2 | CHEN L, RENDE D, SCHADLER L S, et al. Polymer nanocomposite foams[J]. Journal of Materials Chemistry A, 2013, 1(12): 3 837⁃3 850. |
3 | LEE L J, ZENG C, CAO X, et al. Polymer nanocomposite foams[J]. Composites Science and Technology, 2005, 65(15/16): 2 344⁃2 363. |
4 | OKOLIEOCHA C, RAPS D, SUBRAMANIAM K, et al. Microcellular to nanocellular polymer foams: progress (2004–2015) and future directions–a review[J]. European Polymer Journal, 2015, 73: 500⁃519. |
5 | ANTUNES M, VELASCO J I. Multifunctional polymer foams with carbon nanoparticles[J]. Progress in Polymer Science, 2014, 39(3): 486⁃509. |
6 | RIZVI A, CHU R K M, LEE J H, et al. Superhydrophobic and oleophilic open⁃cell foams from fibrillar blends of polypropylene and polytetrafluoroethylene[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21 131⁃21 140. |
7 | LI S, JIANG S, GONG S, et al. Preparation methods, performance improvement strategies, and typical applications of polyamide foams[J]. Industrial & Engineering Chemistry Research, 2021. |
8 | ZHANG H, ZHANG G, GAO Q, et al. Multifunctional microcellular PVDF/Ni⁃chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal, 2020, 379: 122304. |
9 | CHEN L, OZISIK R, SCHADLER L S. The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams[J]. Polymer, 2010, 51(11): 2 368⁃2 375. |
10 | GIRARD O, MORIN J B, RYU J H, et al. Custom foot orthoses improve performance, but do not modify the biomechanical manifestation of fatigue, during repeated treadmill sprints[J]. European Journal of Applied Physiology, 2020, 120(9): 2 037⁃2 045. |
11 | AGUINALDO A, MAHAR A. Impact loading in running shoes with cushioning column systems[J]. Journal of Applied Biomechanics, 2003, 19(4): 353⁃360. |
12 | EVEN⁃TZUR N, WEISZ E, HIRSCH⁃FALK Y, et al. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies[J]. Bio⁃medical Materials and Engineering, 2006, 16(5): 289⁃299. |
13 | VERDEJO R, MILLS N J. Heel–shoe interactions and the durability of EVA foam running⁃shoe midsoles[J]. Journal of Biomechanics, 2004, 37(9): 1 379⁃1 386. |
14 | HUANG G, LI S, LI Y, et al. Preparation and characterization of microcellular foamed thermoplastic polyamide elastomer composite consisting of EVA/TPAE1012[J]. Journal of Applied Polymer Science, 2021, 138(37): 50952. |
15 | YU C T, LAI C C, WANG F M, et al. Fabrication of thermoplastic polyurethane (TPU)/thermoplastic amide elastomer (TPAE) composite foams with supercritical carbon dioxide and their mechanical properties[J]. Journal of Manufacturing Processes, 2019, 48: 127⁃136. |
16 | KIM M S, PARK C C, CHOWDHURY S R, et al. Physical properties of ethylene vinyl acetate copolymer (EVA)/natural rubber (NR) blend based foam[J]. Journal of Applied Polymer Science, 2004, 94(5): 2 212⁃2 216. |
17 | SIPAUT C S, HALIM H A, JAFARZADEH M. Processing and properties of an ethylene–vinyl acetate blend foam incorporating ethylene–vinyl acetate and polyurethane waste foams[J]. Journal of Applied Polymer Science, 2017, 134(16). |
18 | ZHANG Z X, ZHANG T, WANG D, et al. Physicomechanical, friction, and abrasion properties of EVA/PU blend foams foamed by supercritical nitrogen[J]. Polymer Engineering & Science, 2018, 58(5): 673⁃682. |
19 | BARZEGARI M R, HOSSIENY N, JAHANI D, et al. Characterization of hard⁃segment crystalline phase of poly (ether⁃block⁃amide) (PEBAX®) thermoplastic elastomers in the presence of supercritical CO2 and its impact on foams[J]. Polymer, 2017, 114: 15⁃27. |
20 | SHETH J P, XU J, WILKES G L. Solid state structure⁃property behavior of semicrystalline poly (ether⁃block⁃amide) PEBAX® thermoplastic elastomers[J]. Polymer, 2003, 44(3): 743⁃756. |
21 | KARODE N, FITZHENRY L, POUDEL A, et al. Performance enhancement of PEBAX using supercritical fluid extrusion for biomedical applications[C]//Proceedings of the Conference: SPE ANTEC™ Indianapolis. 2016: 1 377⁃1 382. |
22 | LU P, ZHAO Z Y, XU B R, et al. A novel inherently flame⁃retardant thermoplastic polyamide elastomer[J]. Chemical Engineering Journal, 2020, 379: 122278. |
23 | 赵丽娜, 龚惠勤, 杜 影. 聚酰胺弹性体的合成与前景[J]. 石化技术, 2016, 23(4): 1⁃3. |
ZHAO L N, GONG H Q, DU Y. Synthesis and prospects of thermoplastic polyamide elastomer[J]. Petrochemical Industry Technology, 2016, 23(4): 1⁃3. | |
24 | 许冬峰, 冯新星, 张卫东, 等. 长碳链聚酰胺1012弹性体的合成与表征[J]. 中国塑料, 2019, 33(3): 17⁃21, 27. |
XU D F, FENG X X, ZHANG W D, et al. Synthesis and Characterization of long⁃carbon⁃chain polyamide⁃1012⁃based elastomer[J]. China Plastics, 2019, 33(3): 17⁃21, 27. | |
25 | 黄国桃, 桂 源, 李玉才, 等. EVA/聚酰胺弹性体微孔发泡材料的制备与性能表征[J]. 中国塑料, 2021, 35(9): 1⁃7. |
HUANG G T, GUI Y, LI Y C, et al. Preparation and characterization of EVA/nylon elastomer microcellular foaming materials[J]. China Plastics, 2021, 35(9): 1⁃7. | |
26 | SAUCEAU M, FAGES J, COMMON A, et al. New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide[J]. Progress in Polymer Science, 2011, 36(6): 749⁃766. |
27 | 王臣臣, 宋立夫, 白 楠, 等. POE⁃g⁃MAH含量对POE/EPDM复合材料相容性、结构及力学性能的影响[J]. 塑料工业, 2021, 49(12): 56⁃61. |
WANG C C, SONG L F, BAI N, et al. Effects of POE⁃g⁃MAH contents on the compatibility,structure and mechanical properties of POE/EPDM composites[J]. China Plastics Industry, 2021, 49(12): 56⁃61. | |
28 | SU B, ZHOU Y G, DONG B B, et al. Effect of compatibility on the foaming behavior of injection molded polypropylene and polycarbonate blend parts[J]. Polymers, 2019, 11(2): 300. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[3] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[4] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[5] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[6] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[7] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[8] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[9] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[10] | 邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148. |
[11] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[12] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[13] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[14] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[15] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||