
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (5): 140-148.DOI: 10.19491/j.issn.1001-9278.2022.05.023
邓天翔1,2(), 许利娜1,2, 李守海1,2, 张燕1,2, 姚娜1,2, 贾普友1,2, 丁海阳1,2, 李梅1,2(
)
收稿日期:
2021-11-18
出版日期:
2022-05-26
发布日期:
2022-05-26
通讯作者:
李梅(1982—), 女,副研究员,从事生物质资源化学改性和应用研究,meiyu20032001@126.com作者简介:
邓天翔(1999—),男,在读硕士研究生,从事生物质资源化学利用研究,1194763279@qq.com
基金资助:
DENG Tianxiang1,2(), XU Lina1,2, LI Shouhai1,2, ZHANG Yan1,2, YAO Na1,2, JIA Puyou1,2, DING Haiyang1,2, LI Mei1,2(
)
Received:
2021-11-18
Online:
2022-05-26
Published:
2022-05-26
Contact:
LI Mei
E-mail:1194763279@qq.com;meiyu20032001@126.com
摘要:
综述了近年来聚氯乙烯(PVC)接枝改性和交联改性方法的研究进展;其中,接枝改性方法包括在PVC链的C原子上接枝含C、N、S元素基团等及其他亲核取代方法;交联改性方法包括过氧化物交联、三嗪化合物交联、双烯化合物交联、硅烷交联及其他化学交联方法等;最后,对PVC化学改性的发展前景进行了展望。
中图分类号:
邓天翔, 许利娜, 李守海, 张燕, 姚娜, 贾普友, 丁海阳, 李梅. PVC接枝改性及交联改性方法研究进展[J]. 中国塑料, 2022, 36(5): 140-148.
DENG Tianxiang, XU Lina, LI Shouhai, ZHANG Yan, YAO Na, JIA Puyou, DING Haiyang, LI Mei. Research progress in grafting and crosslinking modification of PVC[J]. China Plastics, 2022, 36(5): 140-148.
1 | AZHAR U, HUYAN C X, WAN X Z, et al. A cationic fluoro⁃surfactant for fabrication of high⁃performance fluoropolymer foams with controllable morphology[J]. Mate⁃rials & Design, 2017, 124: 194⁃202. |
2 | NAVARRO R, PERRINO M P, GARCÍA C, et al. Opening new gates for the modification of PVC or other PVC derivatives: synthetic strategies for the covalent bin⁃ding of molecules to PVC[J]. Polymers, 2016, 8(4): 152. |
3 | ZHANG G C, SHI A H, PAN H T, et al. Research progress of rigid crosslinked PVC foam[J]. Engineering Plastics Application,2011, 39(8): 88⁃91. |
4 | 崔明生, 张萍, 贺胜喜. 聚氯乙烯改性研究进展及展望[J].中国氯碱, 2017, 5: 11⁃14. |
ZUI M S, ZHANG P, HE S X. Research progress and prospects of the PVC modification [J]. China Chlor⁃Alkali, 2017, 5: 11⁃14. | |
5 | ENDO K. Synthesis and structure of poly(vinyl chloride)[J]. Progress in Polymer Science, 2002, 27(10): 2 021⁃2 054. |
6 | ARLMAN E J. Thermal and oxidative decomposition of polyvinyl chloride[J]. Journal of Polymer Science, 2010, 12(1): 547⁃558. |
7 | 黄卫东,王兰,孙慧. 聚氯乙烯增韧改性剂及发展状况[J]. 聚氯乙烯, 2002,1: 43⁃48. |
HUANG W D, WANG L, SUN H. Toughening modifier and development of PVC[J]. Polyvinyl Chloride, 2002,1: 43⁃48. | |
8 | 赵鑫磊,贾润礼,刘建卫. PVC增韧改性技术研究近况[J]. 塑料科技, 2015, 10: 106⁃110. |
ZHAO X L, JIA R L, LIU J W. Research situation on toughening modification of PVC[J]. Plastics Science and Technology, 2015, 10: 106⁃110. | |
9 | LIU L. Research progress of PVC stabilizer[J]. Chemical Management, 2019, 514(7): 127⁃129. |
10 | 熊英, 陈光顺, 郭少云. 聚氯乙烯增韧改性研究进展[J]. 聚氯乙烯, 2004, 2: 3⁃7, 12. |
XIONG Y, CHEN G S, GUO S Y. The research progress of toughening modification of PVC [J]. Polyvinyl Chloride, 2004, 2: 3⁃7, 12. | |
11 | 付威. 聚氯乙烯化学改性的研究进展[J]. 科技创新与应用,2019, 32:109⁃111. |
FU W. Research progress on chemical modification of polyvinyl chloride[J]. Technology Innovation and Application, 2019, 32:109⁃111. | |
12 | 严家发. 某些胺类化合物改性聚氯乙烯的研究[D]. 太原:中北大学,2009. |
13 | 刘傲. 聚氯乙烯树脂化学改性及其在离子交换领域的应用[D]. 郑州:郑州大学,2017. |
14 | KIYOSH E. Synthesis and structure of poly(vinyl chloride)[J]. Progress in Polymer Science, 2002, 27(10): 2 021⁃2 054. |
15 | STATUES J W H. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride)[J]. Progress in Polymer Science, 2002, 27(10): 2 133⁃2 170. |
16 | 张文龙, 高丽平, 戴亚杰. 马来酸丁酯接枝聚氯乙烯的工艺与性能[J]. 中国塑料, 2017, 31(11): 78⁃83. |
ZHANG W L, GAO L P, DAI Y J. Preparation and properties of poly(vinyl chloride) grafted with dibutyl maleate[J]. China Plastics, 2017, 31(11): 78⁃83. | |
17 | MOULAY S. Chemical modification of poly(vinyl chloride)⁃still on the run[J]. Progress in Polymer Science, 2010, 35:303⁃331. |
18 | MOULAY S, ZEFFOUNI Z. Pridination of poly(vinyl chloride) via a homolytic pathway[J]. Polymer Science, 2007, 25: 297⁃302. |
19 | MARTÍNEZ G, GÒMEZ M A, GÒMEZ R. Synthesis of a [60]fullerene⁃functionalized poly(vinyl chloride) derivative by stereospecific chemical modification of PVC[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45: 5 408⁃5 419. |
20 | KENNEDY J P, PI Z. Addition of unsaturated hydrocarbons to poly(vinyl chloride) and functionalization thereof: US, 09/732967[P].2004⁃12⁃04. |
21 | PI Z, KENNEDY J P. Allylated PVC[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39: 307⁃312. |
22 | RUSEN E, MARCULESCU B, BUTAC L. The synthesis and characterization of polyvinyl chloride chemically modified with C60 [J]. Fuller Nanot Carb Nanostruct, 2008, 16: 178⁃185. |
23 | ROLF H. 1,3‐dipolar cycloadditions. Past and future[J]. Angewandte Chemie International Edition, 1963, 2: 565⁃598. |
24 | BEVERIDGE J M, CHENOT H M, CRICH A. Covalent functionalization of flexible polyvinyl chloride tubing[J]. Langmuir, 2018, 34(35): 10 407⁃10 412. |
25 | ALTINKOK C, FERHAT H, TASDELEN M, et al. Bile acid bearing poly(vinyl chloride) nanofibers by combination of CuAAC click chemistry and electrospinning process[J]. Materials Today Communications, 2020, 25: 101425. |
26 | GUO J W, LIN Z Y, CHANG C J, et al. Protein valves prepared by click reaction grafting of poly(N⁃isopropylacrylamide) to electrospun poly(vinyl chloride) fibrous membranes[J]. Applied Surface Science, 2018, 439: 313⁃322. |
27 | JIA P Y, HU L H, FENG G D, et al. PVC materials without migration obtained by chemical modification of azide⁃functionalized PVC and triethyl citrate plasticizer[J]. Materials Chemistry and Physics, 2017, 190: 25⁃30. |
28 | YANG P, YAN J, SUN H, et al. Novel environmentally sustainable cardanol⁃based plasticizer covalentlybound to PVC via click chemistry: synthesis and properties[J]. RSC Advances, 2015, 5(22): 16 980⁃16 985. |
29 | LIU R H, DAI Y, LI J Y, et al. 1⁃(3⁃aminopropyl)imida⁃zole functionalized poly(vinyl chloride) for high temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2021, 620: 118873. |
30 | MELÉNDEZ⁃ORTIZ H I, ALVAREZ⁃LORENZO C, CONCHEIRO A, et al. Modification of medical grade PVC with N⁃vinylimidazole to obtain bactericidal surface[J]. Radiation Physics and Chemistry, 2016, 119: 37⁃43. |
31 | ABDEL⁃NABY A S, NOUH S A. Stabilization of poly(vinyl chloride) against laser radiation with ethyl⁃N⁃phenylmaleimide⁃4⁃carboxylate[J]. Polymer Degradation and Stability, 2002, 76(3): 419⁃423. |
32 | JIA P Y, HU L H, SHANG Q Q, et al. Self⁃plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6 665⁃6 673. |
33 | JIA P Y, MA Y F, SONG F, et al. Toxic phthalate⁃free and highly plasticized polyvinyl chloride materials from non⁃timber forest resources in plantation[J]. Reactive and Functional Polymers, 2019, 144: 104363. |
34 | ZOU Y Q, KIZHAKKEDATHU J, BROOKS D. Surface modification of polyvinyl chloride sheets via growth of hydrophilic polymer brushes[J]. Macromolecules, 2009, 42(9): 3 258⁃3 268. |
35 | MCCOY C P, LRWIN N J, HARDY J G, et al. Systematic optimization of poly(vinyl chloride) surface modification with an aromatic thiol[J]. European Polymer Journal, 2017, 97: 40⁃48. |
36 | ZIMMERMANN H, HOLLÄNDER A, BEHNISCH J. Chemical surface modification of PVC by thiol⁃substituted hydroxybenzophenone[J]. Polymer Degradation and Stability, 1992, 36(2): 149⁃153. |
37 | NAVARRO R, BIERBRAUER K, MIJANGOS C, et al. Modification of poly(vinyl chloride) with new aromatic thiol compounds. Synthesis and characterization[J]. Polymer Degradation and Stability, 2008. 93(3): 585⁃591. |
38 | HERRERO M, TIEMBLO P, REYES⁃LABRATA J, et al. PVC modification with new functional groups. Influen⁃ce of hydrogen bonds on reactivity, stiffness and specific volume[J]. Polymer, 2002, 43(9): 2 631⁃2 636. |
39 | RODIONOVA A P, ZEMLYAKOVA E O, KORYAKOVA O V, et al. Chemical modification of polyvinyl chloride with thiourea[J]. Russian Chemical Bulletin, 2019, 68(6): 1 248⁃1 251. |
40 | BIGOT S, LOUARN G, KÉBIR N, et al. Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst[J]. Carbohydrate Polymers, 2013, 98(2): 1 644⁃1 649. |
41 | JIA P Y, MA Y F, KONG Q, et al. Graft modification of polyvinyl chloride with epoxidized biomass⁃based monomers for preparing flexible polyvinyl chloride materials without plasticizer migration[J]. Materials Today Chemistry, 2019, 13: 49⁃58. |
42 | 高亚辉. 长链硫醇化PVC梳状聚合物的结构及性能[D]. 天津:天津工业大学,2016. |
43 | 程培培. 梳型侧链结晶PVC的制备与性能研究[D].武汉:武汉理工大学,2011. |
44 | 王丹华, 赵艺瑾, 刘奎, 等. 熔融挤出制备PVC⁃g⁃TMI接枝物[J]. 塑料, 2020, 49(4): 146⁃150. |
WANG D H, ZHAO Y J, LIU K, et al. PVC⁃g⁃TMI prepared by melt extrusion[J]. Plastic, 2020, 49(4): 146⁃150. | |
45 | 王丹华, 薛燕淑, 李亚楠, 等. 熔融挤出制备PVC⁃g⁃MAH接枝物的研究[J].塑料工业, 2020, 48(1): 122⁃126. |
WANG D H, XUE Y S, LI Y N, et al. Study on PVC⁃g⁃MAH prepared by melt extrusion[J], Plastics Industry, 2020, 48(1): 122⁃126. | |
46 | 罗延龄, 赵振兴. 高分子辐射交联技术及研究进展[J]. 高分子通报, 1999, 4: 88⁃99. |
LUO Y L, ZHAO Z X. Radiation crosslinking technology and research progress of polymer[J]. Polymer Bulletin, 1999, 4: 88⁃99. | |
47 | 李恩军, 章长明. 聚氯乙烯辐射交联改性及应用[J]. 现代塑料加工应用, 2004, 15(1): 60⁃64. |
LI E J, ZHANG C M. Modification and application of the radiation cross⁃linking of PVC[J]. Modern Plastics Processing and Applications, 2004, 15(1): 60⁃64. | |
48 | 王静,刘晓明. 国外聚氯乙烯交联技术的研究进展[J]. 聚氯乙烯,2006, 3: 1⁃6. |
WANG J, LIU X M. Research progress in foreign polyvinyl chloride crosslinking technique[J]. Polyvinyl Chloride, 2006,3:1⁃6. | |
49 | YÁÑEZ⁃FLORES I G, IBARRA⁃GÓMEZ R, RODRÍGUEZ⁃FERNÁNDEZ O S, et al., Peroxide crosslinking of PVC foam formulations[J]. European Polymer Journal, 2000,36(10): 2 235⁃2 241. |
50 | GARCÍA⁃QUESADA J C, MARCILLA A, GILBERT M. Study of the pyrolysis behaviour of peroxide crosslinked unplasticized PVC[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58: 651⁃666. |
51 | RATNAM C T, NASIR M, BAHARIN A. Irradiation crosslinking of unplasticized polyvinylchloride in the presen⁃ce of additives [J]. Polymer Testing, 2001, 20: 485⁃490. |
52 | 王静, 徐珊珊. 软聚氯乙烯热可逆交联性能的研究[J]. 塑料科技, 2006, 34(4): 46⁃49. |
WANG J, XU S S. Study on thermal reversible crosslin⁃king properties of soft PVC[J]. Plastic technology, 2006, 34(4): 46⁃49. | |
53 | 黄自尚. PVC可逆交联发泡材料的制备与性能研究[D].北京: 北京化工大学, 2015. |
54 | 滕谋勇, 张文东, 姜传飞,等. 硅烷交联PVC的制备及性能[J]. 塑料助剂, 2008, 6: 34⁃38. |
TENG M Y, ZHANG W D, JIANG C F, et al. Preparation of cross⁃linking PVC and its performance[J]. Plastic additives, 2008, 6: 34⁃38. | |
55 | BELTRAN M I, GARCIA J C, MARCILLA A. Thermal decomposition behavior of crosslinked plasticized PVC[J]. Polymer Degradation and Stability, 1999, 65(1): 65⁃73. |
56 | HIDALGO M, REINECKE H, MIJANGOS C. PVC containing hydroxyl groups: I. Synthesis, characterization, properties and crosslinking [J]. Polymer, 1999, 40: 3 525⁃3 534. |
57 | 马青赛, 贾润礼. 化学交联聚氯乙烯的研究进展[J]. 上海塑料, 2007,3: 5⁃8. |
MA Q S, JIA R L. Research progress of the polyvinyl chloride by chemical crosslinking[J]. Shanghai plastics, 2007,3: 5⁃8. | |
58 | 孙亚娟, 马智勇, 江盛玲,等. 巯基均三嗪类和有机硅烷类交联剂对聚氯乙烯糊树脂的交联改性[J]. 北京化工大学学报(自然科学版), 2002, 29(4): 32⁃35. |
SUN Y J, MA Z Y, JIANG S L, et al. Crosslinking of poly(vinyl chloride) paste resin by mercapto⁃s⁃triazines and organosilanes[J]. Journal of Beijing University of Chemical Technology, 2002, 29(4): 32⁃35. | |
59 | JANDÓ T, MORI K. Properties of poly(vinyl chloride) fibers crosslinked by 2⁃dibutylamino⁃4,6⁃dimercapto⁃1,3,5⁃triazine[J]. Journal of Vinyl and Additive Technology, 1991, 13(2): 109⁃113. |
60 | MORI K, YOSHIOR N. Modification of poly vinyl chloride. XXXI. Crosslinking of poly vinyl chloride with 2⁃dibuty lamino⁃4,6⁃dithiol⁃s⁃triazineand MgO[J]. Journal of Applied Polymer Science, 1978,16:2 055⁃2 062. |
61 | 包永忠, 翁志学, 黄志明,等. 增塑化微交联聚氯乙烯中化学交联和物理交联的协同作用[J]. 高分子学报, 1999,6: 680⁃686. |
BAO Y Z, WENG Z X, HUANG Z M, et al. Cooperation between chemical and physical crosslinking in plasticized and lightly chemical crosslinked poly(vinyl chloride)[J]. Acta Polymer Sinica, 1999,6: 680⁃686. | |
62 | JIANG Z, YAO K, DU Z, et al. Rigid cross⁃linked PVC foams with high shear properties: The relationship between mechanical properties and chemical structure of the matrix[J]. Composites Science and Technology, 2014, 97(16): 74⁃80. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 杨笑春, 于静, 张青. 壳聚糖对PVC热稳定性能影响研究[J]. 中国塑料, 2022, 36(7): 68-73. |
[3] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[4] | 张文才, 郝晓刚, 李萍, 林浩, 裴强, 丰功吉, 付兆华, 于小芳. 聚乙烯接枝马来酸酐含量对废旧聚乙烯改性沥青性能的影响[J]. 中国塑料, 2022, 36(6): 24-31. |
[5] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[6] | 赵新新, 金晓冬, 施妍, 孙诗兵, 吕锋, 田英良, 赵志永. 基于紫外⁃臭氧辐照的挤塑聚苯乙烯表面改性研究[J]. 中国塑料, 2022, 36(5): 8-13. |
[7] | 汤元君, 李璇, 董隽, 李国能, 罗冠群, 王卫民, 许友生. 废弃PVC塑料热解过程多尺度反应动力学特性研究[J]. 中国塑料, 2022, 36(5): 89-98. |
[8] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[9] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[10] | 刘光远, 翟前超, 王丰武, 汪义辉, 郑德宝, 陈祥迎, 张忠洁. 基于二元接枝单体制备PE⁃HD相容剂、粘接树脂及其性能研究[J]. 中国塑料, 2022, 36(4): 35-42. |
[11] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[12] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[13] | 贾垚, 张泽, 余正发, 崔永岩. 动态可逆交联聚氯乙烯的制备与二次加工测试[J]. 中国塑料, 2022, 36(3): 82-88. |
[14] | 杨羽轩, 柳召刚, 赵金钢, 黄旭博, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 吡嗪⁃2,3⁃二羧酸镧的合成及其对聚氯乙烯稳定性的作用[J]. 中国塑料, 2022, 36(2): 103-110. |
[15] | 杨笑春, 于静, 张青. N⁃乙基哌嗪基邻苯二甲单酰胺酸锌对PVC热稳定性能的影响[J]. 中国塑料, 2022, 36(2): 125-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||