
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (8): 9-20.DOI: 10.19491/j.issn.1001-9278.2021.08.003
收稿日期:
2021-04-19
出版日期:
2021-08-26
发布日期:
2021-08-27
作者简介:
臧晓玲(1995—),女,博士,主要从事导电高分子结构设计及应用研究。
基金资助:
ZANG Xiaoling(), WEN Bianying(
)
Received:
2021-04-19
Online:
2021-08-26
Published:
2021-08-27
Contact:
WEN Bianying
E-mail:zangxiaoling@btbu.edu.cn;wenby@btbu.edu.cn
摘要:
从原材料(单体)来源、催化剂、合成方法、加工技术以及循环回收策略等多个方面综述了高分子材料的绿色制造及全生命周期的发展状况。结果表明,自然界有多种不依赖于石油的资源可以用来制造高分子材料,一些新型的合成和加工技术有助于减少生产过程中的能耗和排放,使用后的高分子制品可通过物理循环、化学循环、能量循环及生物循环4个途径实现再生利用,全生命周期可控的绿色生产路径是未来重要的且可行的发展方向。
中图分类号:
臧晓玲, 温变英. 高分子材料绿色制造与可持续发展[J]. 中国塑料, 2021, 35(8): 9-20.
ZANG Xiaoling, WEN Bianying. Green Manufacturing and Sustainable Development for Polymer Materials[J]. China Plastics, 2021, 35(8): 9-20.
1 | 乔金樑. 我国高分子材料产业转型发展的思考[J]. 石油化工, 2015, 44(9): 1 033⁃1 037. |
QIAO J L. Further Development of Polymer Industry in China[J]. Petrochemical Technology, 2015, 44(9): 1 033⁃1 037. | |
2 | ANASTAS P T, WARNER J C. Principles of Green Ghemistry[J].Green Chemistry: Theory and Practice, 1998: 29⁃56. |
3 | KOBAYASHI S. Enzymatic Polymerization⁃Polymer Synthesis Catalyzed by a Natural Macromolecule[J]. Journal of Polymer Science Part A: polymer Chemistry, 1999, 48: 124⁃127. |
4 | KOBAYASHI S. Enzymatic polymerization: A New Method of Polymer Synthesis[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37 (16): 3 041⁃3 056. |
5 | SHODA S I, UYAMA H, KADOKAWA J I, et al. Enzymes as Green Catalysts for Precision Macromolecular Synthesis[J]. Chemical Reviews, 2016, 116(4): 2 307⁃2 413. |
6 | SHODA S, KOBAYASHI A, KOBAYASHI S. Production of Polymers by White Biotechnology[J]. White Biotechnology for Sustainable Chemistry, 2015: 274⁃309. |
7 | KOBAYASHI S. Enzymatic Ring‐Opening Polymerization and Polycondensation for the Green Synthesis of Polyesters[J]. Polymers for Advanced Technologies, 2015, 26(7): 677⁃686. |
8 | ZHANG X, FEVRE M, JONES G O, et al. Catalysis as an Enabling Science for Sustainable Polymers[J]. Chemical Reviews, 2018, 118(2): 839⁃885. |
9 | HALONEN N J, PÁLVÖLGYI P S, BASSANI A, et al. Bio⁃based Smart Materials for Food Packaging and Sensors—A Review[J]. Frontiers in Materials, 2020, 7: 82. |
10 | DELIDOVICH I, HAUSOUL P J, DENG L, et al. Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production[J]. Chemical Reviews, 2016, 116(3): 1 540⁃1 599. |
11 | 陈学思. 绿色塑料聚乳酸的关键技术研发与产业化应用[J]. 科技促进发展, 2015(3): 355⁃359. |
CHEN X S. Key Technology R & D and Industrial Applications of Biodegradable Plastics Polylactic Acid[J]. Science&Technology for Development, 2015(3): 355⁃359. | |
12 | ZHU Y, ROMAIN C, WILLIAMS C K. Sustainable Polymers from Renewable Resources[J]. Nature, 2016, 540(7633): 354⁃362. |
13 | 全球首套甘蔗制乙醇⁃乙烯⁃聚乙烯工业化装置投产[J]. 石油炼制与化工, 2011, 42(1): 92. |
14 | GÜRLER N, PAŞA S, ALMA M H, et al. The Fabrication of Bilayer Polylactic Acid Films from Cross⁃Linked Starch as Eco⁃Friendly Biodegradable Materials: Synthesis, Characterization, Mechanical and Physical Properties[J]. European Polymer Journal, 2020, 127: 109588. |
15 | BANERJEE A, DICK G R, YOSHINO T, et al. Carbon Dioxide Utilization via Carbonate⁃Promoted C⁃H Carboxylation[J]. Nature, 2016, 531(7593): 215⁃219. |
16 | PLATNIEKS O, GAIDUKOVS S, BARKANE A, et al. Bio⁃based Poly (butylene succinate)/Microcrystalline Cellulose/Nanofibrillated Cellulose⁃Based Sustainable Polymer Composites: Thermo⁃Mechanical and Biodegradation Studies[J]. Polymers, 2020, 12(7): 1472. |
17 | MOHAMMADINEJAD R, KUMAR A, RANJBAR⁃MOHAMMADI M, et al. Recent Advances in Natural Gum⁃Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review[J]. Polymers, 2020, 12(1): 176. |
18 | CHAKRABORTY I, CHATTERJEE K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends[J]. Biomacromolecules, 2020, 21(12): 4 639⁃4 662. |
19 | TAN A C W, POLO⁃CAMBRONELL B J, PROVAGGI E, et al. Design and Development of Low Cost Polyurethane Biopolymer Based on Castor Oil and Glycerol for Biomedical Applications[J]. Biopolymers, 2018, 109(2): e23078. |
20 | COMÍ, M, LLIGADAS, G, RONDA J C, et al. Synthesis of Castor⁃Oil Based Polyurethanes Bearing Alkene/Alkyne Groups and Subsequent Thiol⁃Eneyne Post⁃Modification Eneyne[J]. Polymer, 2016, 103: 163⁃170. |
21 | IBRAHIM S, AHMAD A, MOHAMED N S. Synthesis and Characterization of Castor Oil⁃Based Polyurethane for Potential Application as Host in Polymer Electrolytes[J]. Bulletin of Materials Science, 2015, 38(5):1 155⁃1 161. |
22 | STEMPFLE F, ORTMANN P, MECKING S. Long⁃Chain Aliphatic Polymers to Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates[J]. Chemical Reviews, 2016, 116(7): 4 597⁃4 641. |
23 | HÄUßLER M, ECK M, ROTHAUER D, et al. Closed⁃loop Recycling of Polyethylene⁃like Materials[J], Nature, 2021, 590(7846): 423⁃427. |
24 | MAHMOO N, YUAN Z, SCHMIDT J, et al. Depolymerization of Lignins and Their Applications for the Preparation of Polyols and Rigid Polyurethane Foams: A Review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 317⁃329. |
25 | UPTON B M, KASKO A M. Strategies for the Conversion of Lignin to High⁃Value Polymeric Materials: Review and Perspective. Chemical Reviews, 2016, 116(4): 2 275⁃2 306. |
26 | COATES G W, GETZLER Y D. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy[J]. Nature Reviews Materials, 2020, 5(7): 501⁃516. |
27 | MAHMOOD N, YUAN Z, SCHMIDT J, et al. Preparation of Bio⁃Based Rigid Polyurethane Foam Using Hydrolytically Depolymerized Kraft Lignin via Direct Replacement or Oxypropylation[J]. European Polymer Journal, 2015,68: 1⁃9. |
28 | WANG S, MA S, XU C, et al. Vanillinderived High⁃Performance Fame Retardant Epoxy Resins: Facile Synthesis and Properties[J]. Macromolecules, 2017, 50(5):1 892⁃1 901. |
29 | LI R J, GUTIERREZ J, CHUNG Y L, et al. A Lignin⁃Epoxy Resin Derived From Biomass as an Alternative to Formaldehyde⁃Based Wood Adhesives[J]. Green Chemi⁃stry, 2018, 20(7): 1 459⁃1 466. |
30 | WINNACKER M, RIEGER B. Recent Progress in Sustainable Polymers Obtained From Cyclic Terpenes: Synthesis, Properties, and Application Potential[J]. ChemSusChem, 2015, 8(15): 2 455⁃2 471. |
31 | GANDINI A, LACERDA T M. From Monomers to Polymers From Renewable Resources: Recent Advances[J]. Progress in Polymer Science, 2015,48: 1⁃39. |
32 | SATOH, K, NAKAHARA A, MUKUNOKI K, et al. Sustainable Cycloolefin Polymer From Pine Tree Oil for Optoelectronics Material: Living Cationic Polymerization of β⁃pinene and Catalytic Hydrogenation of High⁃Molecular⁃Weight Hydrogenated Poly (β⁃Pinene)[J]. Polymer Chemistry, 2014, 5(9): 3 222⁃3 230. |
33 | SHARMA S, SRIVASTAVA A K. Alternating Copolymers of Limonene with Methyl Methacrylate: Kinetics and Mechanism[J]. Journal of Macromolecular Science, Part A, 2003, 40(6): 593⁃603. |
34 | HAUENSTEIN O, AGARWAL S, GREINER A. Bio⁃Based Polycarbonate as Synthetic Toolbox[J]. Nature Communications, 2016, 7: 11862. |
35 | PARRINO F, FIDALGO A, PALMISANO L, et al. Polymers of Limonene Oxide and Carbon Dioxide: Polycarbonates of the Solar Economy[J]. ACS Omega, 2018, 3(5): 4 884⁃4 890. |
36 | 王献红, 周庆海, 秦玉升, 等. 如何将二氧化碳变“废”为“宝”——中国科学院关键技术突破助推二氧化碳共聚物产业化[J]. 科技促进发展, 2016, 2: 223⁃227. |
WANG X H,ZHOU Q H,QIN Y S,et al.How to Achieve Resource Utilization of Carbon Dioxide Transforming Emissions into Materials⁃⁃ Breakthroughs in Key Technologies to Boost the Industrialization of Carbon Dioxide Copolymer[J]. Science&Technology for Development, 2016, 2: 223⁃227. | |
37 | SULLEY G S, GREGORY G L, CHEN T T D, et al. Switchable Catalysis Improves the Properties of CO2⁃Derived Polymers: Poly (cyclohexene carbonate⁃b⁃ε⁃decalactone⁃b⁃cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics[J]. Journal of the American Chemical Society, 2020, 142(9): 4 367⁃4 378. |
38 | 安 赛, 祁 波, 郭伊荇, 等. 典型介孔硅基固体酸催化剂的新进展[J]. 科学通报, 2018, 63: 3 546⁃3 554. |
AN S, QI B, GUO Y H, et al. Latest Progress on the Typical Mesoporous Si⁃based Solid Acid Catalysts[J]. Chinese Science Bulletin, 2018, 63: 3 546⁃3 554. | |
39 | VASIĆ K, HOJNIK PODREPŠEK G, KNEZ Ž, et al. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides[J]. Catalysts, 2020, 10(2): 237. |
40 | CLARK J H, MONKS G L, Nightingale D J, et al. A New Solid Acid⁃Based Route to Linear Alkylbenzenes[J]. Journal of Catalysis, 2000, 193(2): 348⁃350. |
41 | SHI G L, YU F, YAN X L, et al. Synthesis of Tetragonal Sulfated Zirconia Via a Novel Route for Biodiesel Production[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 311⁃316. |
42 | TAMAMI B, PARVANAK BORUJENY K. Chemoselective Tetrahydropyranylation of Alcohols and Phenols Using Polystyrene Supported Aluminium Chloride as a Catalyst[J]. Tetrahedron Letters, 2004, 45(4): 715⁃718. |
43 | BORUJENI K P, TAMAMI B. Polystyrene and Silica Gel Supported AlCl3 as Highly Chemoselective Heterogeneous Lewis Acid Catalysts for Friedel⁃Crafts Sulfonylation of Aromatic Compounds[J]. Catalysis Communications, 2007, 8(8): 1 191⁃1 196. |
44 | BORUJENI K P, MASSAH A R. Synthesis and Application of Polystyrene Supported Aluminium Triflate as a New Polymeric Lewis Acid Catalyst[J]. Reactive and Functional Polymers, 2006, 66(10): 1 126⁃1 131. |
45 | HARA M, YOSHIDA T, TAKAGAKI A, et al. A Carbon Material as a Strong Protonic Acid[J]. Angewandte Chemie International Edition, 2004, 43(22): 2 955⁃2 958. |
46 | OKAMURA M, TAKAGAKI A, TODA M, et al. Acid⁃Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon[J]. Chemistry of Materials, 2006, 18(13): 3 039⁃3 045. |
47 | TAKAGAKI A, TODA M, OKAMURA M, et al. Esterification of Higher Fatty Acids by a Novel Strong Solid Acid[J]. Catalysis Today, 2006, 116(2): 157⁃161. |
48 | WANG X, LIU R, WAJE M M, et al. Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst[J]. Chemistry of Materials, 2007, 19(10): 2 395⁃2 397. |
49 | CHICA A. Zeolites: Promised Materials for the Sustainable Production of Hydrogen[J]. ISRN Chemical Engineering, 2013: 907425. |
50 | 刘 蓉, 王晓龙, 郜时旺, 等. 一种利用核壳结构分子筛催化剂催化杂醇油转化的方法: 中国, CN110773226A[P]. 2020⁃02⁃11. |
51 | SHANMUGAM S, XU J, BOYER C. Light⁃Regulated Polymerization under Near⁃Infrared/Far⁃Red Irradiation Catalyzed by Bacteriochlorophylla[J]. Angewandte Chemie International Edition, 2016, 55(3): 1 036⁃1 040. |
52 | WU Z, JUNG K, BOYER C. Effective Utilization of NIR Wavelengths for Photo‐Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses[J]. Angewandte Chemie International Edition, 2020, 59(5): 2 013⁃2 017. |
53 | JIANG J, YE G, LORANDI F, et al. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light⁃Regulated Macromolecular Synthesis[J]. Angewandte Chemie International Edition, 2019, 58(35): 12 096⁃12 101. |
54 | KÜTAHYA C, WANG P, LI S, et al. Carbon Dots as a Promising Green Photocatalyst for Free Radical and ATRP⁃Based Radical Photopolymerization with Blue LEDs[J]. Angewandte Chemie International Edition, 2020, 59(8): 3 166⁃3 171. |
55 | MOHAMED M A, SALLEH W N W, JAAFAR J, et al. Incorporation of N⁃doped TiO2 Nanorods in Regenerated Cellulose Thin Films Fabricated From Recycled Newspaper as a Green Portable Photocatalyst[J]. Carbohydrate Polymers, 2015, 13: 429⁃437. |
56 | PUSKAS J E, SEO K S, SEN M Y. Green Polymer Chemistry: Precision Synthesis of Novel Multifunctional Poly(ethylene glycol)s Using Enzymatic Catalysis[J]. European Polymer Journal, 2011, 47(4): 524⁃534. |
57 | SOKOŁOWSKA M, STACHOWSKA E, CZAPLICKA M, et al. Effect of Enzymatic versus Titanium Dioxide/Silicon Dioxide Catalyst on Crystal Structure of ‘Green’ Poly[(butylene succinate)⁃co⁃(dilinoleic succinate)] Copolymers[J]. Polymer International, 2021, 70 (5): 514⁃526. |
58 | HEFFERNAN M A, O’REILLY E J. Rapid Microwave Assisted Synthesis and Characterisation of a Semiconducting Polymer with pKa Tuneable Degradation Properties[J]. European Polymer Journal, 2019, 114: 206⁃212. |
59 | KUMAR A, KUANG Y, LIANG Z, et al. Microwave Chemistry, Recent Advancements, and Eco⁃Friendly Microwave⁃Assisted Synthesis of Nanoarchitectures and their Applications: A Review[J]. Materials Today Nano, 2020, 11: 100076. |
60 | RICHARDS W T, LOOMIS A L. The Chemical Effects of High Frequency Sound Waves I:A preliminary Survey[J]. Journal of the American Chemical Society, 1927, 49(12): 3 086⁃3 100. |
61 | SUSLICK K S, PRICE G J. Applications of Ultrasound to Materials Chemistry[J]. Annual Review of Materials Science, 1999, 29(1): 295⁃326. |
62 | BLASKOVICOVA M, GAPLOVSKY A, BLASKO J. Synthesis and Photochemistry of 1⁃Iodocyclohexene:Influence of Ultrasound on Ionic Vs. Radical Behaviour[J]. Molecules, 2007, 12(2): 188⁃193. |
63 | WANG X K, CHEN G H, GUO W L. Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions[J]. Molecules, 2003, 8(1): 40⁃44. |
64 | WANG X, WANG Y, HOU H, et al. Ultrasonic Method to Synthesize Glucan⁃g⁃poly(acrylic acid)/Sodium Lignosulfonate Hydrogels and Studies of Their Adsorption of Cu2+ from Aqueous Solution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (8): 6 438⁃6 446. |
65 | FENG L, LIU J, XU C, et al. Better Understanding the Polymerization Kinetics of Ultrasonic⁃Template Method and New Insight on Sludge Floc Characteristics Research[J]. Science of the Total Environment, 2019, 689: 546⁃556. |
66 | REHM B H A. Bacterial Polymers: Biosynthesis, Modifications and Applications[J]. Nature Reviews Microbiology, 2010, 8(8): 578⁃592. |
67 | BONARTSEV A P, BONARTSEVA G A, RESHETOV I V, et al. Application of Polyhydroxyalkanoates in Medicine and the Biological Activity of Natural Poly (3⁃hydroxybutyrate)[J]. Acta Naturae, 2019, 11(2): 41. |
68 | MASOOD F. Polyhydroxyalkanoates in the Food Packaging Industry[M]. Academic Press, 2017:153⁃177. |
69 | POIRIER Y, NAWRATH C, SOMERVILLE C. Production of Polyhydroxyalkanoates, A Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants[J]. Bio/Technology, 1995, 13(2): 142⁃150. |
70 | Lin J W P, Dudek L P. Synthesis and Properties of Poly (2, 5‐thienylene)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1980, 18(9): 2 869⁃2 873. |
71 | 温变英. 高分子材料成型加工新技术[M]. 北京: 化学工业出版社, 2014:101⁃114. |
72 | SANZ⁃HORTA R, MARTINEZ⁃CAMPOS E, GARCÍA C, et al. Breath Figures Makes Porous the “So⁃Called” Skin Layer Obtained in Polymer Foams Prepared by Supercritical CO2 Treatments[J]. The Journal of Supercritical Fluids, 2021, 167: 105051. |
73 | LIAN X, MOU W, KUANG T, et al. Synergetic Effect of Nanoclay and Nano⁃CaCO3 Hybrid Filler Systems on the Foaming Properties and Cellular Structure of Polystyrene Nanocomposite Foams Using Supercritical CO2[J].Cellular Polymers, 2020, 39(5): 185⁃202. |
74 | 陈竹生. 聚合物反应注射成型[J]. 高分子通报, 1989, (2): 45⁃50. |
CHEN Z S. Polymer Reaction Injection Molding[J]. Chinese Polymer Bulletin, 1989, (2): 45⁃50. | |
75 | 瞿金平, 陈佳佳, 刘环裕,等. 体积拉伸形变加工成型方法最新研究进展[J]. 高分子通报, 2013, (9): 9⁃17. |
QU J P , CHEN J J, LIU H Y, et al.The Latest Research on Volume Elongational Deformation Plasticizing Processing Method[J].Polymer Bulletin, 2013, (9): 9⁃17. | |
76 | CLARK J H, FARMER T J, HERRERO DAVILA L, et al. Circular Economy Design Considerations for Research and Process Development in the Chemical Sciences[J]. Green Chemistry, 2016, 18(14): 3 914⁃3 934. |
77 | IGNATYEV I, THIELEMANS W, VANDERBEKE B. Recycling of Polymers: A Review[J]. ChemSusChem, 2014, 7(6): 1 579⁃1 593. |
78 | NISHIDA H. Development of Materials and Technologies for Control of Polymer Recycling[J]. Polymer Journal, 2011, 43(5): 435⁃447. |
79 | CHOI S, CHOI H M. Eco⁃friendly, Expeditious Depolymerization of PET in the Blend Fabrics by Using a Bio⁃based Deep Eutectic Solvent under Microwave Irradiation for Composition Identification[J]. Fibers and Polymers, 2019, 20(4): 752⁃759. |
80 | SHEEL A, PANT D. Recycling of Polyethylene Terephthalate Bottles[M]. William Andrew Publishing, 2019: 61⁃84. |
81 | XU G, JIANG H, STAPELBERG M, et al. Self⁃Perpetuating Carbon Foam Microwave Plasma Conversion of Hydrocarbon Wastes into Useful Fuels and Chemicals[J]. Environmental Science & Technology, 2021, 55(9):doi:10.1021/acs.est.0c06977. |
82 | 戴铁军. 包装废弃物的回收利用与管理[M]. 北京: 科学技术出版社, 2016:5. |
83 | 邹琦志. 废纸造纸企业减排措施研究[J]. 资源节约与环保, 2014(6): 33⁃34. |
84 | AYRE D. Technology Advancing Polymers and Polymer Composites Towards Sustainability: A Review[J]. Current Opinion in Green and Sustainable Chemistry, 2018, 13: 108⁃112. |
85 | ANTONIADOU M, VARZAKAS T, TZOUTZAS I. Circular Economy in Conjunction with Treatment Methodologies in the Biomedical and Dental Waste Sectors[J]. Circular Economy and Sustainability, 2021(1):1⁃30. |
86 | ILYAS R A, SAPUAN S M, KADIER A, et al. Advanced Processing, Properties, and Applications of Starch and Other Bio⁃Based Polymers[M].Elsevier,2020:111⁃138. |
87 | TSERKI V, MATZINOS P, ZAFEIROPOULOS N E, et al. Development of Biodegradable Composites with Treated and Tompatibilized Lignocellulosic Fibers[J]. Journal of Applied Polymer Science, 2006, 100(6): 4 703⁃4 710. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 马占峰, 牛国强, 芦珊. 中国塑料加工业(2021)[J]. 中国塑料, 2022, 36(6): 142-148. |
[3] | 祝景云, 衣惠君, 鄢薇, 李大伟. 合成膜专用聚乙烯树脂原料的研发[J]. 中国塑料, 2022, 36(6): 77-80. |
[4] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[5] | 冯秀, 沈颖, 许胜. 五价有机铋的合成及其在聚氨酯中的应用[J]. 中国塑料, 2022, 36(5): 104-109. |
[6] | 魏辽. 水溶性高分子材料在油气田压裂中的应用研究进展[J]. 中国塑料, 2022, 36(5): 149-157. |
[7] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[8] | 蒋森, 王立岩, 陈延明, 张乐, 翟桂法. MPO改性PBS共聚酯的合成及其热性能研究[J]. 中国塑料, 2022, 36(4): 24-29. |
[9] | 刘光远, 翟前超, 王丰武, 汪义辉, 郑德宝, 陈祥迎, 张忠洁. 基于二元接枝单体制备PE⁃HD相容剂、粘接树脂及其性能研究[J]. 中国塑料, 2022, 36(4): 35-42. |
[10] | 李京霖, 郑义, 赵丽雅, 王攀, 杨鑫玉, 任连海. 厨余垃圾生物合成聚羟基脂肪酸酯研究进展[J]. 中国塑料, 2022, 36(3): 110-119. |
[11] | 曲岩松. “十四五”期间中国合成树脂工业的机遇和挑战[J]. 中国塑料, 2022, 36(3): 140-145. |
[12] | 贾垚, 张泽, 余正发, 崔永岩. 动态可逆交联聚氯乙烯的制备与二次加工测试[J]. 中国塑料, 2022, 36(3): 82-88. |
[13] | 张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165. |
[14] | 王富玉, 郭金强, 张玉霞, 杨涛. 塑料包装材料的减量化与单材质化技术[J]. 中国塑料, 2021, 35(8): 136-145. |
[15] | 任照芳, 李丹, 潘静静, 钟怀宁, 王亮. 可持续发展背景下我国食品接触用再生塑料的机遇与挑战[J]. 中国塑料, 2021, 35(8): 30-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||