
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (9): 8-14.DOI: 10.19491/j.issn.1001-9278.2021.09.002
收稿日期:
2021-03-22
出版日期:
2021-09-26
发布日期:
2021-09-23
LU Weixin, LU Chong(), WANG Bin, HU Jing, WU Jingjing, ZHOU Qinpeng
Received:
2021-03-22
Online:
2021-09-26
Published:
2021-09-23
Contact:
LU Chong
E-mail:luchong@ecust.edu.cn
摘要:
介绍了不同环氧改性剂对聚酰胺6(PA6)/乙烯?乙烯醇共聚物(EVOH)共混物的拉伸性能、流变性能、结晶性能的影响,并研究了甲基丙烯酸缩水甘油酯(GMA)与共混物的反应机理。使用转矩测试、红外光谱、氢核磁共振、拉伸测试、旋转流变测试和差示扫描量热法对共混物进行了表征。结果表明,随着改性剂环氧值的增加,共混物的共混转矩、拉伸强度、复数黏度和储能模量均增加,共混物的结晶度和结晶温度降低,断裂伸长率呈先升高后降低的趋势;考虑到加工过程的流动性,GMA改性的共混物性能最佳,拉伸强度提高了8.5 %,断裂伸长率提高了26.6 %;红外光谱和氢核磁共振表明,GMA可以在高温下发生自聚合反应,形成多环氧低聚物,进而与PA6和EVOH反应,提高共混物的性能。
中图分类号:
陆伟鑫, 陆冲, 王斌, 胡晶, 吴菁菁, 周秦鹏. 环氧改性剂对PA6/EVOH共混物性能的影响[J]. 中国塑料, 2021, 35(9): 8-14.
LU Weixin, LU Chong, WANG Bin, HU Jing, WU Jingjing, ZHOU Qinpeng. Effect of Epoxy Modifiers on Properties of PA6/EVOH Blends[J]. China Plastics, 2021, 35(9): 8-14.
样品名称 | PA6含量 | EVOH含量 | SOG?02含量 | PEGE含量 | ADR4468含量 | GMA含量 | TGIC含量 | 抗氧剂1010 含量 | 抗氧剂168 含量 |
---|---|---|---|---|---|---|---|---|---|
70/30 | 70 | 30 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1SOG | 70 | 30 | 1 | 0 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1PEGE | 70 | 30 | 0 | 1 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1ADR | 70 | 30 | 0 | 0 | 1 | 0 | 0 | 0.2 | 0.2 |
70/30+1GMA | 70 | 30 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 |
70/30+1TGIC | 70 | 30 | 0 | 0 | 0 | 0 | 1 | 0.2 | 0.2 |
样品名称 | PA6含量 | EVOH含量 | SOG?02含量 | PEGE含量 | ADR4468含量 | GMA含量 | TGIC含量 | 抗氧剂1010 含量 | 抗氧剂168 含量 |
---|---|---|---|---|---|---|---|---|---|
70/30 | 70 | 30 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1SOG | 70 | 30 | 1 | 0 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1PEGE | 70 | 30 | 0 | 1 | 0 | 0 | 0 | 0.2 | 0.2 |
70/30+1ADR | 70 | 30 | 0 | 0 | 1 | 0 | 0 | 0.2 | 0.2 |
70/30+1GMA | 70 | 30 | 0 | 0 | 0 | 1 | 0 | 0.2 | 0.2 |
70/30+1TGIC | 70 | 30 | 0 | 0 | 0 | 0 | 1 | 0.2 | 0.2 |
样品 | 改性剂环氧值/ mol·(100 g)-1 | 最终转矩/N·m |
---|---|---|
70/30 | — | 6.0 |
70/30+1SOG | 0.05 | 6.2 |
70/30+1PEGE | 0.35 | 9.9 |
70/30+1ADR | 0.35 | 10.8 |
70/30+1GMA | 0.70 | 15.3 |
70/30+1TGIC | 1.01 | 19.0 |
样品 | 改性剂环氧值/ mol·(100 g)-1 | 最终转矩/N·m |
---|---|---|
70/30 | — | 6.0 |
70/30+1SOG | 0.05 | 6.2 |
70/30+1PEGE | 0.35 | 9.9 |
70/30+1ADR | 0.35 | 10.8 |
70/30+1GMA | 0.70 | 15.3 |
70/30+1TGIC | 1.01 | 19.0 |
特征峰 | 初始面积 | 校正面积 | ||
---|---|---|---|---|
加热前的GMA | 加热后的GMA | 加热前的GMA | 加热后的GMA | |
C=O峰 (1 719) | 10.88 | 15.85 | 100 | 100 |
C=C峰 (1 638) | 4.54 | 4.53 | 41.7 | 28.6 |
C—H峰 (3 062) | 0.52 | 0.54 | 4.78 | 3.41 |
C—O峰 (1 163) | 16.95 | 24.40 | 156 | 154 |
特征峰 | 初始面积 | 校正面积 | ||
---|---|---|---|---|
加热前的GMA | 加热后的GMA | 加热前的GMA | 加热后的GMA | |
C=O峰 (1 719) | 10.88 | 15.85 | 100 | 100 |
C=C峰 (1 638) | 4.54 | 4.53 | 41.7 | 28.6 |
C—H峰 (3 062) | 0.52 | 0.54 | 4.78 | 3.41 |
C—O峰 (1 163) | 16.95 | 24.40 | 156 | 154 |
特征峰 | 初始面积 | 校正面积 | ||
---|---|---|---|---|
加热前的GMA | 加热后的GMA | 加热前的GMA | 加热后的GMA | |
a峰(CH3) | 1 909 | 1 844 | 1.00 | 1.00 |
b峰(CH2) | 1 242 | 1 202 | 0.65 | 0.65 |
c峰(CH) | 587 | 565 | 0.31 | 0.31 |
d峰(CH2) | 1 266 | 1 247 | 0.66 | 0.68 |
e峰(C=CH2) | 1 278 | 1 206 | 0.67 | 0.65 |
特征峰 | 初始面积 | 校正面积 | ||
---|---|---|---|---|
加热前的GMA | 加热后的GMA | 加热前的GMA | 加热后的GMA | |
a峰(CH3) | 1 909 | 1 844 | 1.00 | 1.00 |
b峰(CH2) | 1 242 | 1 202 | 0.65 | 0.65 |
c峰(CH) | 587 | 565 | 0.31 | 0.31 |
d峰(CH2) | 1 266 | 1 247 | 0.66 | 0.68 |
e峰(C=CH2) | 1 278 | 1 206 | 0.67 | 0.65 |
样品 | 改性剂环氧值/mol·(100 g)-1 | 拉伸强度/MPa | 断裂伸长率/ % |
---|---|---|---|
70/30 | — | 64.7 | 308.4 |
70/30+1SOG | 0.05 | 65.5 | 332.8 |
70/30+1PEGE | 0.35 | 64.5 | 359.7 |
70/30+1ADR | 0.35 | 68.8 | 392.9 |
70/30+1GMA | 0.70 | 70.2 | 390.3 |
70/30+1TGIC | 1.01 | 71.2 | 303.1 |
样品 | 改性剂环氧值/mol·(100 g)-1 | 拉伸强度/MPa | 断裂伸长率/ % |
---|---|---|---|
70/30 | — | 64.7 | 308.4 |
70/30+1SOG | 0.05 | 65.5 | 332.8 |
70/30+1PEGE | 0.35 | 64.5 | 359.7 |
70/30+1ADR | 0.35 | 68.8 | 392.9 |
70/30+1GMA | 0.70 | 70.2 | 390.3 |
70/30+1TGIC | 1.01 | 71.2 | 303.1 |
样品 | 改性剂环氧值/ mol·(100 g)-1 | 结晶峰 温度/℃ | 结晶度/ % | 熔融峰 温度/℃ |
---|---|---|---|---|
70/30 | — | 178.4 | 25.4 | 219.7 |
70/30+1SOG | 0.05 | 178.7 | 25.5 | 219.4 |
70/30+1PEGE | 0.35 | 177.5 | 24.1 | 217.9 |
70/30+1ADR | 0.35 | 177.9 | 23.0 | 218.0 |
70/30+1GMA | 0.70 | 172.1 | 22.7 | 217.3 |
70/30+1TGIC | 1.01 | 175.1 | 22.2 | 213.7 |
样品 | 改性剂环氧值/ mol·(100 g)-1 | 结晶峰 温度/℃ | 结晶度/ % | 熔融峰 温度/℃ |
---|---|---|---|---|
70/30 | — | 178.4 | 25.4 | 219.7 |
70/30+1SOG | 0.05 | 178.7 | 25.5 | 219.4 |
70/30+1PEGE | 0.35 | 177.5 | 24.1 | 217.9 |
70/30+1ADR | 0.35 | 177.9 | 23.0 | 218.0 |
70/30+1GMA | 0.70 | 172.1 | 22.7 | 217.3 |
70/30+1TGIC | 1.01 | 175.1 | 22.2 | 213.7 |
1 | LI L L, WU Z H, JIANG S S, et al. Effect of Halloysite Nanotubes on Thermal and Flame Retardant Properties of Polyamide 6/Melamine Cyanurate Composites[J]. Polymer Composites, 2015, 36 (5): 892⁃896. |
2 | O'NEILL A, ARCHER E, MCILHAGGER A, et al. Polymer Nanocomposites:in Situpolymerization of Polyamide 6 in the Presence of Graphene Oxide[J]. Polymer Composites, 2017, 38 (3): 528⁃537. |
3 | OU B L, ZHOU Z H, LIU Q Q, et al. Mechanical Pro⁃perties and Nonisothermal Crystallization Kinetics of Polyamide 6/Functionalized TiO2 Nanocomposites[J]. Polymer Composites, 2014, 35 (2): 294⁃300. |
4 | ERDOGAN A R, KAYGUSUZ I, KAYNAK C. Influences of Aminosilanization of Halloysite Nanotubes on the Mechanical Properties of Polyamide⁃6 Nanocomposites[J]. Polymer Composites, 2014, 35 (7): 1 350⁃1 361. |
5 | SHENG Z, JIA G, YONGYUAN S, et al. Enhancing the Flame Retardancy of Polyamide 6 by Guanidine Sulfamate⁃Modified Carbon Nanoparticles: Carbon Nanotubes versus Graphite Oxide[J]. Polymer Composites, 2018, 40 (S2): 1 884⁃1 892. |
6 | TANG G, WANG X, JIANG S, et al. Thermal Degradation and Combustion Behaviors of Flame Retarded Glass Fiber Reinforced Polyamide 6 Composites Based on Cerium Hypophosphite[J]. Polymer Composites, 2016, 37 (10): 3 073⁃3 082. |
7 | TIAN C, WANG Y Z, LIU H H, et al. Melt⁃Spinning of Carboxylated Mwnts⁃Reinforced Polyamide 6 Fibers with Solid Mixing Nanocomposites[J]. Polymer Composites, 2017, 39 (12): 4 298⁃4 309. |
8 | YU K F, LI Z C, LIANG J, et al. Investigation of the Synergy Influence of Ksicb and POE⁃g⁃MAH on Mechanical Properties of Basalt Fiber⁃Reinforced PA6 Composites[J]. Polymer Composites, 2020, 42 (2): 739⁃752. |
9 | KODAL M, ERTURK S, SANLI S, et al. Properties of Talc/Wollastonite/Polyamide 6 Hybrid Composites[J]. Polymer Composites, 2015, 36 (4): 739⁃746. |
10 | SHAO H, WU B, GUO J B, et al. High Performance Polyamide 6 Composites Prepared by Reactive Extrusion[J]. Polymer Composites, 2014, 35 (5): 985⁃992. |
11 | LIU J, YI H, LIN H, et al. Effects of Functional Group on the Mechanical Properties of PA6/SiO2 Composites[J]. Polymer Composites, 2014, 35 (3): 435⁃440. |
12 | LIU Y, LIU S, YIN C. Synthesis and Structure⁃Property of Polyamide 6/Macrogol/Attapulgite Nanocomposites[J]. Polymer Composites, 2014, 35 (9): 1 852⁃1 857. |
13 | KIM D, KWON H, SEO J. EVOH Nanocomposite Films with Enhanced Barrier Properties under High Humidity Conditions[J]. Polymer Composites, 2014, 35 (4): 644⁃654. |
14 | ELLINGHAM T, YILMAZ G, DUDDLESTON L, et al. Subcritical Gas⁃Assisted Processing of Ethylene Vinyl Alcohol +Nanoclay Composites[J]. Polymer Compo⁃sites, 2020, 41 (4): 1 584⁃1 594. |
15 | LEE E J, YOON J S, PARK E S. Morphology, Resistivity, and Thermal Behavior of EVOH/Carbon Black and EVOH/Graphite Composites Prepared by Simple Saponification Method[J]. Polymer Composites, 2011, 32 (5): 714⁃726. |
16 | YU R, LIU Y, GAO Z, et al. Preparation and Properties of Nylon 11/Ethylene⁃Vinyl Alcohol/Montmorillonite Ternary Composites[J]. Polymer Composites, 2020, 41 (12): 5 343⁃5 354. |
17 | WANG B, LU C, HU J, et al. Effects of Cross⁃Linking by MgCl2 as An Initiator on the Properties of EVOH[J]. Journal of Thermoplastic Composite Materials, 2020, 089270572091331. |
18 | LIN X, LIU Y, CHEN X, et al. Reactive Compatibilization of Polyamide 6/Olefin Block Copolymer Blends: Phase Morphology, Rheological Behavior, Thermal Behavior, and Mechanical Properties[J]. Materials, 2020, 13 (5): 1 146. |
19 | ARTZI N, KHATUA B B, TCHOUDAKOV R, et al. Physical and Chemical Interactions in Melt Mixed Nylon‐6/EVOH Blends[J]. Journal of Macromolecular Science, Part B, 2006, 43 (3): 605⁃624. |
20 | FOLDES E, PUKANSZKY B. Miscibility⁃Structure⁃Property Correlation in Blends of Ethylene Vinyl Alcohol Copolymer and Polyamide 6/66[J]. Journal of Colloid and Interface Science, 2005, 283 (1): 79⁃86. |
21 | YEH J T, CHEN H Y. Blending and Oxygen Permeation Properties of the Blown Films of Blends of Modified Polyamide and Ethylene Vinyl Alcohol Copolymer with Varying Vinyl Alcohol Contents[J]. Journal of Materials Science, 2007, 42 (14): 5 742⁃5 751. |
22 | YEH J T, CHEN H Y, TSAI F C. Blending and White Spirit Permeation Properties of the Blends of Modified Polyamide and Ethylene Vinyl Alcohol with Varying Vinyl Alcohol Contents[J]. Journal of Applied Polymer Science, 2006, 102 (2): 1 224⁃1 233. |
23 | YEH J T, YAO W H, DU Q, et al. Blending and Barrier Properties of Blends of Modified Polyamide and Ethylene Vinyl Alcohol Copolymer[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43 (5): 511⁃521. |
24 | CERRUTI P, LAURIENZO P, MALINCONICO M, et al. Thermal Oxidative Stability and Effect of Water on Gas Transport and Mechanical Properties in PA6⁃EVOH Films[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45 (7): 840⁃849. |
25 | OZMEN S C, OZKOC G, ThermalSERHATLI E, Mechanical and Physical Properties of Chain Extended Recycled Polyamide6via Reactive Extrusion: Effect of Chain Extender Types[J]. Polymer Degradation and Stability, 2019, 162: 76⁃84. |
26 | XU M, CHEN Y, LIU T, et al. Determination of Modified Polyamide 6's Foaming Windows by Bubble Growth Simulations Based on Rheological Measurements[J]. Journal of Applied Polymer Science, 2019, 136 (42): 48138. |
27 | 杨海玉, 黄春龙, 姜 鹏, 等. 环氧化合物一步法制备醇醚的合成方法: CN 106946663 A[P]. 2017⁃07⁃14. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[3] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[4] | 刘义, 孙伟, 曲国兴, 王叶, 袁宁, 杨少林, 许霞, 常小毅, 张宇飞. 薄壁注塑透明聚丙烯专用料的结构与性能分析[J]. 中国塑料, 2022, 36(7): 37-43. |
[5] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[6] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[7] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[8] | 吴雄杰, 朱东波, 孙江波, 高龙美, 储雨, 程劲松, 谢爱迪. 聚乙烯/纳米硫酸钙粉体复合软包装应用性能研究[J]. 中国塑料, 2022, 36(6): 10-15. |
[9] | 李金凤, 梁卓恩, 彭新龙. 膨胀型阻燃剂/二乙基次磷酸铝阻燃改性不饱和树脂基复合材料[J]. 中国塑料, 2022, 36(6): 116-123. |
[10] | 张文才, 郝晓刚, 李萍, 林浩, 裴强, 丰功吉, 付兆华, 于小芳. 聚乙烯接枝马来酸酐含量对废旧聚乙烯改性沥青性能的影响[J]. 中国塑料, 2022, 36(6): 24-31. |
[11] | 张云峰, 钟威, 张璐, 兰志兴, 董志博. 液体石蜡/聚砜树脂/纳米SiO2复合相变材料的制备及性能表征[J]. 中国塑料, 2022, 36(6): 32-38. |
[12] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[13] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[14] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[15] | 夏云霞, 李磊, 罗章生, 朱倩沁, 何力军. 基于闪蒸法制备再生聚乙烯无纺布及其性能研究[J]. 中国塑料, 2022, 36(5): 14-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||