
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (11): 51-58.DOI: 10.19491/j.issn.1001-9278.2022.11.008
收稿日期:
2022-08-08
出版日期:
2022-11-26
发布日期:
2022-11-25
作者简介:
李桂丽(1990—),女,讲师,从事聚合物结晶及改性研究,guilili@hncj.edu.cn
LI Guili1,2(), YU Qiuran1, HAO Mingliang2, LI Haimei2
Received:
2022-08-08
Online:
2022-11-26
Published:
2022-11-25
摘要:
采用偏光显微镜(PLM)、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等探究了苎麻纤维(RF)表面处理参数对模压聚乳酸(PLA)/RF复合材料结晶行为和拉伸性能的影响。结果表明,碱处理参数影响RF诱导PLA的结晶行为,碱处理时间为3 h时RF促进PLA结晶,降低冷结晶温度(Tc),提高相对结晶度,增加横晶致密程度;碱处理时间为6 h时,RF对PLA结晶有阻碍作用。Mo方法量化分析PLA非等温结晶动力学研究结果表明,植物纤维表面形貌的变化不改变PLA的结晶机制。拉伸性能测试结果表明,碱处理时间为6 h时增强和增韧效果最佳,PLA/RF复合材料的拉伸强度和断裂伸长率分别提高了19.6 %和23.9 %。
中图分类号:
李桂丽, 余秋然, 郝明亮, 李海梅. 苎麻纤维表面改性对聚乳酸结晶及拉伸性能的影响[J]. 中国塑料, 2022, 36(11): 51-58.
LI Guili, YU Qiuran, HAO Mingliang, LI Haimei. Effect of surface treatment of ramie fiber on crystallization behavior and tensile properties of poly(lactic acid)[J]. China Plastics, 2022, 36(11): 51-58.
样品 | Tg/℃ | Tc1/℃ | Tc2/℃ | Tm/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | Xc/% |
---|---|---|---|---|---|---|---|
PLA/RF⁃0 | 59.8 | 101.0 | 153.7 | 167.0 | 17.5 | 30.9 | 16.8 |
PLA/RF⁃3 | 60.1 | 100.3 | 154.0 | 167.2 | 26.6 | 34.5 | 9.9 |
PLA/RF⁃6 | 60.4 | 105.2 | 153.3 | 166.9 | 24.5 | 60.3 | 7.7 |
PLA/RF⁃9 | 60.0 | 101.2 | 154.7 | 166.6 | 30.8 | 34.5 | 4.6 |
PLA/RF⁃0# | 60.4 | 101.8 | 153.9 | 166.8 | 11.4 | 31.1 | 24.7 |
PLA/RF⁃3# | 60.3 | 100.3 | 153.4 | 166.6 | 9.2 | 34.3 | 31.5 |
PLA/RF⁃6# | 60.5 | 106.1 | 153.6 | 166.8 | 13.7 | 30.3 | 20.8 |
PLA/RF⁃9# | 58.7 | 102.9 | 154.2 | 166.2 | 13.3 | 35.2 | 27.6 |
样品 | Tg/℃ | Tc1/℃ | Tc2/℃ | Tm/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | Xc/% |
---|---|---|---|---|---|---|---|
PLA/RF⁃0 | 59.8 | 101.0 | 153.7 | 167.0 | 17.5 | 30.9 | 16.8 |
PLA/RF⁃3 | 60.1 | 100.3 | 154.0 | 167.2 | 26.6 | 34.5 | 9.9 |
PLA/RF⁃6 | 60.4 | 105.2 | 153.3 | 166.9 | 24.5 | 60.3 | 7.7 |
PLA/RF⁃9 | 60.0 | 101.2 | 154.7 | 166.6 | 30.8 | 34.5 | 4.6 |
PLA/RF⁃0# | 60.4 | 101.8 | 153.9 | 166.8 | 11.4 | 31.1 | 24.7 |
PLA/RF⁃3# | 60.3 | 100.3 | 153.4 | 166.6 | 9.2 | 34.3 | 31.5 |
PLA/RF⁃6# | 60.5 | 106.1 | 153.6 | 166.8 | 13.7 | 30.3 | 20.8 |
PLA/RF⁃9# | 58.7 | 102.9 | 154.2 | 166.2 | 13.3 | 35.2 | 27.6 |
样品 | Φ/℃·min-1 | Tp/℃ | ∆ω/℃ | t1/2 /min |
---|---|---|---|---|
PLA/RF⁃0 | 10.0 | 97.3 | 54.7 | 3.1 |
5.0 | 112.0 | 51.8 | 4.6 | |
2.5 | 121.5 | 29.9 | 6.6 | |
1.0 | 130.8 | 15.6 | 9.5 | |
PLA/RF⁃3 | 10.0 | 100.1 | 52.7 | 2.9 |
5.0 | 113.2 | 51.5 | 4.3 | |
2.5 | 122.2 | 27.8 | 6.4 | |
1.0 | 131.4 | 14.8 | 9.0 | |
PLA/RF⁃6 | 10.0 | 96.7 | 55.4 | 3.3 |
5.0 | 109.1 | 54.8 | 4.9 | |
2.5 | 120.2 | 31.0 | 7.2 | |
1.0 | 128.6 | 16.8 | 11.0 |
样品 | Φ/℃·min-1 | Tp/℃ | ∆ω/℃ | t1/2 /min |
---|---|---|---|---|
PLA/RF⁃0 | 10.0 | 97.3 | 54.7 | 3.1 |
5.0 | 112.0 | 51.8 | 4.6 | |
2.5 | 121.5 | 29.9 | 6.6 | |
1.0 | 130.8 | 15.6 | 9.5 | |
PLA/RF⁃3 | 10.0 | 100.1 | 52.7 | 2.9 |
5.0 | 113.2 | 51.5 | 4.3 | |
2.5 | 122.2 | 27.8 | 6.4 | |
1.0 | 131.4 | 14.8 | 9.0 | |
PLA/RF⁃6 | 10.0 | 96.7 | 55.4 | 3.3 |
5.0 | 109.1 | 54.8 | 4.9 | |
2.5 | 120.2 | 31.0 | 7.2 | |
1.0 | 128.6 | 16.8 | 11.0 |
样品 | Xc (t)/% | F(T)/K∙min a-1 | a |
---|---|---|---|
PLA/RF⁃0 | 20 | 43.55 | 1.85 |
40 | 80.64 | 1.96 | |
60 | 134.29 | 2.05 | |
80 | 214.22 | 2.11 | |
PLA/RF⁃3 | 20 | 41.35 | 1.92 |
40 | 73.26 | 2.01 | |
60 | 115.35 | 2.05 | |
80 | 185.86 | 2.07 | |
PLA/RF⁃6 | 20 | 44.79 | 1.77 |
40 | 83.60 | 1.88 | |
60 | 140.19 | 1.99 | |
80 | 222.30 | 2.08 |
样品 | Xc (t)/% | F(T)/K∙min a-1 | a |
---|---|---|---|
PLA/RF⁃0 | 20 | 43.55 | 1.85 |
40 | 80.64 | 1.96 | |
60 | 134.29 | 2.05 | |
80 | 214.22 | 2.11 | |
PLA/RF⁃3 | 20 | 41.35 | 1.92 |
40 | 73.26 | 2.01 | |
60 | 115.35 | 2.05 | |
80 | 185.86 | 2.07 | |
PLA/RF⁃6 | 20 | 44.79 | 1.77 |
40 | 83.60 | 1.88 | |
60 | 140.19 | 1.99 | |
80 | 222.30 | 2.08 |
1 | Liu J L, Yang Y F, Ding J N. The value of China’s legislation on plastic pollution prevention in 2020[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 108(4):601⁃608. |
2 | Chae Y, An Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240:387⁃395. |
3 | 李岩, 李倩. 植物纤维增强复合材料力学高性能化与多功能化研究[J]. 固体力学学报, 2017, 38(3):215⁃243. |
LI Y, LI Q. High mechanical perormance and multi⁃functionlities of plant fiber reinforced composites[J]. Chinese Journal of solid mechanics, 2017, 38(3):215⁃243. | |
4 | Siakeng R, Jawaid M, Ariffin H, et al. Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites[J]. Polymer Composites, 2019, 40(5):2 000⁃2 011. |
5 | Wang H, Memon H, Hassan Elwathig A M, et al. Rheological and dynamic mechanical properties of abutilon natural straw and polylactic acid biocomposites[J]. International Journal of Polymer Science, 2019:8732520. |
6 | Rajeshkumar G, Seshadri S A, Devnani G L, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites⁃A comprehensive review[J]. Journal of Cleaner Production, 2021, 310: 127483. |
7 | 文泽伟, 刘福亚, 崔晓杰, 等. 机械力改性芦苇纤维及其对聚乳酸复合材料的阻燃性能研究[J]. 中国塑料, 2021, 35(11):38⁃43. |
WEN Z W, LIU F Y, CUI X J, et al. Mechanical modification of polylactic acid with reed fibers for flame⁃retardant application[J]. China Plastics, 2021, 35(11):38⁃43. | |
8 | 夏学莲, 史向阳, 赵海鹏, 等. γ射线辐照对PLA/Flax复合材料结晶行为的影响[J]. 包装工程, 2020, 41(13): 154⁃160. |
XIA X L, SHI X Y, ZHAO H P, et al. Effect of γ⁃ray irradiation on crystallization behavior of PLA/flax composites[J]. Packing Engineering, 2020, 41(13): 154⁃160. | |
9 | Li G L, Hao M L, Chen Y F, et al. Nonisothermal crystallization behavior and mechanical properties of poly(lactic acid)/ramie fiber biocomposites[J]. Polymer Composites, 2022, 43(5):2 759⁃2 770. |
10 | Sawpan M A, Pickering K L, Fernyhough A. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(3): 310⁃319. |
11 | Orue A, Eceiza A, Arbelaiz A. The effect of sisal fiber surface treatments, plasticizer addition and annealing process on the crystallization and the thermo⁃mechanical proper⁃ties of poly(lactic acid) composites[J]. Industrial Crops and Products, 2018, 118:321⁃333. |
12 | Li G L, Yang B L, Han W J, et al. Tailoring the thermal and mechanical properties of injection⁃molded poly(lactic acid) parts through annealing[J]. Journal Applied Polymer Science, 2021, 138(2):49648. |
13 | Wang G L, Zhang D M, Li B, et al. Strong and thermal⁃resistance glass fiber⁃reinforced polylactic acid (PLA) composites enabled by heat treatment[J]. International Journal of Biological Macromolecules, 2019, 129: 448⁃459. |
14 | Deng L, Xu C, Wang X H, et al. Supertoughened polylactide binary blend with high heat deflection temperature achieved by thermal annealing above the glass transition temperature[J]. ACS Sustainable Chemistry & Enginee⁃ring, 2017, 6(1): 480⁃490. |
15 | Nagarajan V, Zhang K, Misra M, et al. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nuclea⁃ting agent and mold temperature[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 112 003⁃112 014. |
16 | Mazzanti V, De Luna M S, Pariante R, et al. Natural fiber⁃induced degradation in PLA⁃hemp biocomposites in the molten state[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137:105990. |
17 | Qian S P, Mao H L, Sheng K C, et al. Effect of low⁃concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites[J]. Journal of Applied Polymer Science, 2013, 3:1 667⁃1 674. |
18 | Fischer E W, Sterzel H J, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions[J]. Steinkopff, 1973, 251(11):980⁃990. |
19 | Li G L, Hou X Q, Li H M, et al. Interfacial cylindrite of poly(lactic acid) induced by pulling a single glass fiber[J]. European Polymer Journal, 2019, 114:127⁃133. |
20 | Cebe P, Hong S D. Crystallization behavior of poly(etheretherketone)[J]. Polymer, 1986, 27(8):1 183⁃1 192. |
21 | 张静, 王洪, 邹威, 等. 改性纤维素纳米晶对聚酰胺6结晶行为的影响[J]. 中国塑料, 2020, 43(6):1⁃6. |
ZHANG J, WANG H, ZOU W, et al. Effect of modified cellulose nanocrystals on crystallization behavior of polyamide 6[J]. China Plastics, 2020,43(6):1⁃6. | |
22 | Avrami M. Kinetics of phase change. ii transformation⁃time relations for random distribution of nuclei[J]. Journal of Chemical Physics, 1940, 8(2): 212⁃224. |
23 | Senthamaraikannan P, Saravanakumar S S, Sanjay M R, et al. Physico⁃chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement[J]. Materials Letters, 2019, 240: 221⁃224. |
24 | 丰波, 谢俊康, 李富强, 等. PE⁃LD/桉木粉复合材料的制备及其性能研究[J]. 中国塑料, 2018, 32(9):42⁃48. |
FENG B, XIE J K, LI F Q, et l. Preparation and properties of wood plastic composites based on PE⁃LD and eucalyptus flour powders[J]. China Plastics, 2018,32(9):42⁃48. |
[1] | 孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104. |
[2] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[3] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[4] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[5] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[6] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[7] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[8] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[9] | 李瑞, 姜艳峰, 吴双, 安彦杰, 姜泽钰, 张明强. 升温淋洗分级研究聚丙烯流延膜专用料的微观结构及热学表征[J]. 中国塑料, 2022, 36(3): 53-57. |
[10] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[11] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
[12] | 张泽文, 朱恩赐, 张熙祥, 魏丽娟, 赵世成. 两种羧酸盐成核剂的制备及其对聚丙烯的成核效果研究[J]. 中国塑料, 2022, 36(12): 100-107. |
[13] | 杨尚山, 尚鹏鹏, 徐静, 解加卓, 张坤, 张丽丽. 可生物降解PBAT/PLA/生物质垃圾袋的制备和表征[J]. 中国塑料, 2022, 36(11): 127-132. |
[14] | 毛晨, 刘番, 鄂毅, 邹姝燕, 龚兴厚. 纳米CoFe2O4的制备及其对PLA结晶性能的影响[J]. 中国塑料, 2022, 36(1): 9-14. |
[15] | 韦宗辰, 郗悦玮, 翁云宣. 聚乳酸基复合骨组织修复材料的研究现状及进展[J]. 中国塑料, 2021, 35(9): 136-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||