
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (10): 127-133.DOI: 10.19491/j.issn.1001-9278.2024.10.022
收稿日期:
2023-12-25
出版日期:
2024-10-26
发布日期:
2024-10-21
通讯作者:
欧阳玉阁(1992—),女,讲师,研究方向为功能高分子材料,ouyangyuge@btbu.edu.cn基金资助:
TAN Jiani, XU Zhen, OUYANG Yuge()
Received:
2023-12-25
Online:
2024-10-26
Published:
2024-10-21
Contact:
OUYANG Yuge
E-mail:ouyangyuge@btbu.edu.cn
摘要:
随着柔性电子器件的飞速发展和应用,传统的热管理材料无法满足高导热、高韧性、良好机械适应性的应用需求。具有高导热系数的柔性导热薄膜材料在下一代器件的热管理应用中显示出巨大的潜力,因此引起了广大学者的关注。目前,导热薄膜材料在智能手机、超薄笔记本、柔性可穿戴设备和智能家电设备中均展现巨大的应用潜能。本文从提升填充型导热复合膜的导热性能出发,介绍了填充型导热复合膜的分类和填充型导热复合膜的导热机理。由设计填料构筑低热阻高导热通路和构筑三维导热网络两种思路提升复合膜的导热性能,阐明了填充型导热复合薄膜的研究进展。
中图分类号:
谭佳妮, 徐震, 欧阳玉阁. 填充型聚合物基导热复合膜的研究进展[J]. 中国塑料, 2024, 38(10): 127-133.
TAN Jiani, XU Zhen, OUYANG Yuge. Research progress in thermally conductive composite films based on filled polymers[J]. China Plastics, 2024, 38(10): 127-133.
1 | Qin M, Xu Y, Cao R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge[J]. Advanced functional materials, 2018, 28(45): 1805053. |
2 | 贾程瑛,刘 文,朱阳阳,等.导热纸(膜)的研究进展[J].中国造纸, 2022, 41(5): 88⁃97. |
JIA C Y, LIU W, ZHU Y Y, et al. Thermally conductive paper (films): a review [J].China Paper, 2022, 41(5): 88⁃97. | |
3 | 杨 丹,巩 阳,肖荣林,等.高导热石墨烯薄膜的制备及研究进展[J].广州化工, 2022,50(19): 21⁃22,25. |
YANG D, GONG Y, XIAO R L, et al. Preparation and research progress of graphene thin films with high thermal conductivity[J].Guangzhou Chemical Industry, 2022,50(19): 21⁃22,25. | |
4 | Chen J, Huang X, Zhu Y, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials, 2017, 27(5): 1604754. |
5 | Thapa A, Wang X, Li W. Synthesis and field emission properties of Cu⁃filled vertically aligned carbon nanotubes[J]. Applied Surface Science, 2021, 537: 148086. |
6 | 高 汕.基于氮化硼纳米片基热管理材料的制备及性能探究[D].桂林: 桂林电子科技大学, 2023. |
7 | Wang Z G, Huang Y F, Zhang G Q, et al. Enhanced thermal conductivity of segregated poly (vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10 391⁃10 397. |
8 | Wang Y, Xia S, Xiao G, et al. High⁃loading boron nitride⁃based bio⁃inspired paper with plastic⁃like ductility and metal⁃like thermal conductivity[J]. ACS Applied Materials Interfaces, 2020, 12(11): 13 156⁃13 164. |
9 | 王雪霏.BN/SiO2@MWCNTs/PVDF导热复合材料的制备与性能研究[D].哈尔滨: 哈尔滨理工大学, 2023. |
10 | Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science, 2016, 61: 1⁃28. |
11 | 杨贵.聚乙烯醇基导热复合材料的制备与性能研究[D].郑州: 郑州大学, 2021. |
12 | Hu J, Huang Y, Yao Y, et al. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three⁃dimensional interconnected network of BN[J]. ACS applied materials & interfaces, 2017, 9(15): 13 544⁃13 553. |
13 | An D, Cheng S, Jiang C, et al. A novel environmentally friendly boron nitride/lignosulfonate/natural rubber composite with improved thermal conductivity[J]. Journal of Materials Chemistry C, 2020, 8(14): 4 801⁃4 809. |
14 | Gurijala A, Zando R B, Faust J L, et al. Castable and printable dielectric composites exhibiting high thermal conductivity via percolation⁃enabled phonon transport[J]. Matter, 2020, 2(4): 1 015⁃1 024. |
15 | 张海宝.基于纳米级聚合物基导热复合材料的制备及性能研究[D].合肥: 安徽大学, 2020. |
16 | Shen Z, Feng J. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles[J]. ACS applied materials & interfaces, 2018, 10(28): 24 193⁃24 200. |
17 | Ito H, Sakata M, Hongo C, et al. Cellulose nanofiber nanocomposites with aligned silver nanoparticles[J]. Nanocomposites, 2018, 4(4): 167⁃177. |
18 | 李宗廷.高导热系数陶瓷填充PTFE基复合基板制备与性能研究[D].成都:电子科技大学,2020. |
19 | 梁尔优.聚酰亚胺树脂基导热复合材料研究[D].北京: 北京化工大学, 2023. |
20 | Li J, Wang B, Ge Z, et al. Flexible and hierarchical 3D interconnected silver nanowires/cellulosic paper⁃based thermoelectric sheets with superior electrical conductivity and ultrahigh thermal dispersion capability[J]. ACS applied materials & interfaces, 2019, 11(42): 39 088⁃39 099. |
21 | Wang Z G, Yang Y L, Zheng Z L, et al. Achieving excellent thermally conductive and electromagnetic shielding performance by nondestructive functionalization and oriented arrangement of carbon nanotubes in composite films[J]. Composites Science and Technology, 2020, 194: 108190. |
22 | 谭桂珍,胡子悦,张英明,等.静电纺丝制备MWCNTs/PVA定向导热复合纤维膜[J].化工新型材料, 2023, 51(1): 59⁃64. |
TAN G Z, HU Z Y, ZHANG Y M, et al. Preparation of MWCNTs/PVA constant conductive composite fiber membranes by electrospinning[J].New Chemical Materials, 2023, 51(1): 59⁃64. | |
23 | Houshyar S, Nayak R, Padhye R, et al. Fabrication and characterization of nanodiamond coated cotton fabric for improved functionality[J]. Cellulose, 2019, 26: 5 797⁃5 806. |
24 | Liu X, Gao Y, Shang Y, et al. Non⁃covalent modification of boron nitride nanoparticle⁃reinforced PEEK composite: thermally conductive, interfacial, and mechanical properties[J]. Polymer, 2020, 203: 122763. |
25 | Ou X, Chen S, Lu X, et al. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry[J]. Composites Communications, 2021, 23: 100549. |
26 | Wei Q, Yang D. A self⁃healing polyvinyl alcohol⁃based composite with high thermal conductivity and excellent mechanical properties[J]. Composites Communications, 2023, 39: 101561. |
27 | Zhang F, Feng Y, Feng W. Three⁃dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms[J]. Materials Science and Engineering: R: Reports, 2020, 142: 100580. |
28 | Xiao H, Huang Z X, Zhang Z P, et al. Highly thermally conductive flexible copper clad laminates based on sea⁃island structured boron nitride/polyimide composites[J]. Composites Science and Technology, 2022, 230: 109087. |
29 | 邝凤霞.磁调控制备热管理氮化硼/高分子复合材料[D].郑州:郑州大学,2020. |
30 | Cheng S, Guo X, Tan P, et al. Aligning graphene nanoplates coplanar in polyvinyl alcohol by using a rotating magnetic field to fabricate thermal interface materials with high through⁃plane thermal conductivity[J]. Composites Part B: Engineering, 2023, 264: 110916. |
31 | Li M, Ali Z, Wei X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering, 2021, 208: 108599. |
32 | Zhou J A, Xie C Z, Wang R, et al. Ultrahigh in⁃plane thermal conductive epoxy composites by cellulose⁃supported GnPs@PDA skeleton under stress⁃induced orientation strategy[J]. Diamond and Related Materials, 2023, 139: 110340. |
33 | Pradhan S S, Unnikrishnan L, Mohanty S, et al. Thermally conducting polymer composites with EMI shielding: a review[J]. Journal of Electronic Materials, 2020, 49: 1 749⁃1 764. |
34 | Zhang S, Li M, Miao Z, et al. Ice⁃templated graphene in⁃situ loaded boron nitride aerogels for polymer nanocomposites with high thermal management capability[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159: 107 005⁃107 013. |
35 | Hu D, Zhang Z, Liu M, et al. Multifunctional UV⁃shielding nanocellulose films modified with halloysite nanotubes⁃zinc oxide nanohybrid[J]. Cellulose, 2020, 27: 401⁃413. |
36 | Hu J, Hou X, Yang T, et al. Thermal management performance of polyvinyl alcohol composite with boron phosphide decorated reduced graphene oxide[J]. Composites Part A: Applied Science and Manufacturing, 2022, 155: 106847. |
37 | Wang X, Wu P. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility[J]. ACS applied materials & interfaces, 2019, 11(24): 21 946⁃21 954. |
38 | Wu W, Liu H, Wang Z, et al. Formation of thermal conductive network in boron nitride/polyvinyl alcohol by ice⁃templated self⁃assembly[J]. Ceramics International, 2021, 47(23): 33 926⁃33 929. |
39 | Ruan K, Guo Y, Tang Y, et al. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning⁃hot press technique[J]. Composites Communications, 2018, 10: 68⁃72. |
40 | Yin C G, Ma Y, Liu Z J, et al. Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes[J]. Polymer, 2019, 162: 100⁃107. |
41 | Bai L, Zhang Z M, Pu J H, et al. Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip⁃coated with silver nanowires[J]. Polymer, 2020, 194: 122390. |
42 | Liu B, Li Y, Fei T, et al. Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution⁃mixing and hot⁃pressing method[J]. Chemical Engineering Journal, 2020, 385: 123829. |
43 | Yu W C, Zhang G Q, Liu Y H, et al. Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks[J]. Chemical Engineering Journal, 2019, 373: 556⁃564. |
44 | Yang G, Zhang X, Pan D, et al. Highly thermal conductive poly (vinyl alcohol) composites with oriented hybrid networks: silver nanowire bridged boron nitride nanoplatelets[J]. ACS Applied Materials & Interfaces, 2021, 13(27): 32 286⁃32 294. |
45 | Xu Y, Wang X, Hao Q. A mini review on thermally conductive polymers and polymer⁃based composites[J]. Composites Communications, 2021, 24: 100617. |
46 | Song N, Jiao D, Cui S, et al. Highly anisotropic thermal conductivity of layer⁃by⁃layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS applied materials & interfaces, 2017, 9(3): 2 924⁃2 932. |
47 | Li G, Tian X, Xu X, et al. Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers[J]. Composites Science and Technology, 2017, 138: 179⁃185. |
[1] | 唐波, 相利学, 代旭明, 王二轲, 姜涛, 王瑛, 吴新锋. 金刚石导热复合材料的研究进展[J]. 中国塑料, 2024, 38(8): 125-131. |
[2] | 高玮, 熊昌义, 韩飞, 孔泥早, 颜渊巍. 导热吸波双功能粉体改性设计研究[J]. 中国塑料, 2024, 38(6): 19-24. |
[3] | 陈浩, 杨卫民, 寻尚伦, 张海涛, 焦志伟. 双螺杆挤出机塑化系统电磁加热过程的数值模拟与实验研究及应用[J]. 中国塑料, 2024, 38(3): 101-108. |
[4] | 张俊, 奚望, 钱立军, 周凤帅, 邱勇, 王靖宇, 张志鹏. 氮化硼/磷杂菲三嗪化合物阻燃导热聚碳酸酯复合材料的制备及其性能研究[J]. 中国塑料, 2024, 38(3): 31-37. |
[5] | 相利学, 唐波, 周刚, 代旭明, 王二轲, 姜涛, 吴新锋. 3D打印技术在高导热复合材料中的应用研究[J]. 中国塑料, 2023, 37(9): 125-132. |
[6] | 张之琪, 李润焘, 杨瑞程, 代云良, 章晓娟, 温变英. 片状FeSiAl/Al2O3共填充聚偏氟乙烯复合材料的吸波导热性能研究[J]. 中国塑料, 2023, 37(9): 44-50. |
[7] | 李果, 朱惠豪, 马玉录, 王玉, 吉华建, 谢林生. 导热型微孔透气薄膜的制备及性能研究[J]. 中国塑料, 2022, 36(7): 14-20. |
[8] | 何明峰, 王珂, 王启扬, 杨肖, 郭红, 胡泊洋, 李保安. 聚偏氟乙烯/类基体基团修饰石墨烯导热复合材料研究[J]. 中国塑料, 2022, 36(2): 41-48. |
[9] | 何一丹, 章晓娟, 杨红娟, 赵萌萌, 温变英. MXene及其复合材料在吸波和导热领域的研究进展[J]. 中国塑料, 2022, 36(10): 167-177. |
[10] | 王启扬, 杨肖, 陈吉奂, 何悦星, 杨冬梅, 胡泊洋, 郭红, 李保安. 双隔离结构聚乙烯/石墨烯导热复合材料的研究[J]. 中国塑料, 2022, 36(1): 32-41. |
[11] | 张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165. |
[12] | 姚军龙, 王新瑞, 胡立, 江学良, 游峰, 周敏. 酒石酸改性BT增强PP复合材料导热与介电性能[J]. 中国塑料, 2021, 35(4): 30-34. |
[13] | 陈逸镕, 赖金娣, 莫艺桦, 邓井溢, 徐子威, 张婧婧. 共混顺序对石墨烯微片在PP/PA6/SEBS共混物中的选择性分布和迁移的影响[J]. 中国塑料, 2021, 35(1): 31-36. |
[14] | 李城城, 徐杰, 赵文坚, 黄聪, 钟进福. 导热绝缘PE-LD/PE-g-MAH/h-BN泡沫塑料的制备及性能研究[J]. 中国塑料, 2020, 34(9): 27-32. |
[15] | 王杨慧, 马玉录, 谢林生, 宋果, 朱惠豪. 高填充改性复合材料导热预测模型的建立及应用[J]. 中国塑料, 2020, 34(7): 49-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||