
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (3): 31-37.DOI: 10.19491/j.issn.1001-9278.2024.03.006
张俊1,2,3, 奚望1,2,3(), 钱立军1,2,3, 周凤帅1, 邱勇1,2,3, 王靖宇1,2,3, 张志鹏4
收稿日期:
2023-09-01
出版日期:
2024-03-26
发布日期:
2024-03-28
通讯作者:
奚望(1992-),工学博士,讲师,硕士研究生导师,从事环境友好型高性能阻燃无卤阻燃剂的设计、制备及其在聚合物材料中的阻燃行为机理研究,xiwang@btbu.edu.cn基金资助:
ZHANG Jun1,2,3, XI Wang1,2,3(), QIAN Lijun1,2,3, ZHOU Fengshuai1, QIU Yong1,2,3, WANG Jingyu1,2,3, ZHANG Zhipeng4
Received:
2023-09-01
Online:
2024-03-26
Published:
2024-03-28
Contact:
XI Wang
E-mail:xiwang@btbu.edu.cn
摘要:
基于氮化硼(BN)/磷杂菲三嗪化合物(TAD)构建了阻燃导热聚碳酸酯(PC)复合材料,并对其阻燃性能和导热性能进行了研究。结果表明,BN/TAD阻燃导热复合体系能够有效提高PC复合材料的阻燃性能,当BN添加量为20 %,TAD含量为3 %时,PC/20BN/3TAD复合材料的垂直燃烧测试达到UL 94 V⁃0级,极限氧指数达到35.1 %;通过锥形量热仪测试,证明了BN/TAD阻燃导热复合体系能够有效降低热释放速率峰值、总热释放量、有效燃烧热等性能参数,并且二者在凝聚相中可以发挥出色的协同成炭效果,赋予PC复合材料优异的阻燃特性;从导热性能测试方面来看,BN/TAD阻燃导热复合体系的导热系数较纯PC相比提高了320 %,获得了兼具优异阻燃特性和出色导热性能的PC复合材料。
中图分类号:
张俊, 奚望, 钱立军, 周凤帅, 邱勇, 王靖宇, 张志鹏. 氮化硼/磷杂菲三嗪化合物阻燃导热聚碳酸酯复合材料的制备及其性能研究[J]. 中国塑料, 2024, 38(3): 31-37.
ZHANG Jun, XI Wang, QIAN Lijun, ZHOU Fengshuai, QIU Yong, WANG Jingyu, ZHANG Zhipeng. Preparation and characterizations of flame⁃retardant and heat⁃conductive polycarbonate⁃based composites with boron nitride and phosphaphenanthrene[J]. China Plastics, 2024, 38(3): 31-37.
样品 | 组分含量/% | ||||||
---|---|---|---|---|---|---|---|
PC | BN | TAD | PTFE | KH⁃560 | 抗氧剂168 | 抗氧剂1010 | |
GPC | 98.1 | 0 | 0 | 0.3 | 1 | 0.2 | 0.4 |
0BN/3TAD/PC | 95.1 | 0 | 3 | 0.3 | 1 | 0.2 | 0.4 |
5BN/3TAD/PC | 90.1 | 5 | 3 | 0.3 | 1 | 0.2 | 0.4 |
10BN/3TAD/PC | 85.1 | 10 | 3 | 0.3 | 1 | 0.2 | 0.4 |
15BN/3TAD/PC | 80.1 | 15 | 3 | 0.3 | 1 | 0.2 | 0.4 |
20BN/3TAD/PC | 75.1 | 20 | 3 | 0.3 | 1 | 0.2 | 0.4 |
样品 | 组分含量/% | ||||||
---|---|---|---|---|---|---|---|
PC | BN | TAD | PTFE | KH⁃560 | 抗氧剂168 | 抗氧剂1010 | |
GPC | 98.1 | 0 | 0 | 0.3 | 1 | 0.2 | 0.4 |
0BN/3TAD/PC | 95.1 | 0 | 3 | 0.3 | 1 | 0.2 | 0.4 |
5BN/3TAD/PC | 90.1 | 5 | 3 | 0.3 | 1 | 0.2 | 0.4 |
10BN/3TAD/PC | 85.1 | 10 | 3 | 0.3 | 1 | 0.2 | 0.4 |
15BN/3TAD/PC | 80.1 | 15 | 3 | 0.3 | 1 | 0.2 | 0.4 |
20BN/3TAD/PC | 75.1 | 20 | 3 | 0.3 | 1 | 0.2 | 0.4 |
样品 | LOI/% | 阻燃级别 |
---|---|---|
GPC | 25.9 | V⁃2 |
0BN/3TAD/PC | 27.5 | V⁃2 |
5BN/3TAD/PC | 29.4 | V⁃0 |
10BN/3TAD/PC | 31.3 | V⁃0 |
15BN/3TAD/PC | 34.1 | V⁃0 |
20BN/3TAD/PC | 35.1 | V⁃0 |
样品 | LOI/% | 阻燃级别 |
---|---|---|
GPC | 25.9 | V⁃2 |
0BN/3TAD/PC | 27.5 | V⁃2 |
5BN/3TAD/PC | 29.4 | V⁃0 |
10BN/3TAD/PC | 31.3 | V⁃0 |
15BN/3TAD/PC | 34.1 | V⁃0 |
20BN/3TAD/PC | 35.1 | V⁃0 |
样品 | TTI/s | pk⁃HRR/kW·m-2 | THR/MJ·m-2 | av⁃EHC/MJ·kg-1 | TSP/m2 | av⁃COY/kg·kg-1 | av⁃COY2/kg·kg-1 | 残炭率/% |
---|---|---|---|---|---|---|---|---|
GPC | 38 | 678 | 39.5 | 21.05 | 13.05 | 0.119 | 1.81 | 17.22 |
0BN/3TAD/PC | 35 | 570 | 41.0 | 20.87 | 14.83 | 0.124 | 1.78 | 10.69 |
5BN/3TAD/PC | 34 | 374 | 37.1 | 20.15 | 14.31 | 0.128 | 1.73 | 17.98 |
10BN/3TAD/PC | 41 | 319 | 33.25 | 18.90 | 17.02 | 0.120 | 1.68 | 24.99 |
15BN/3TAD/PC | 49 | 304 | 32.65 | 20.05 | 13.74 | 0.101 | 1.79 | 31.66 |
20BN/3TAD/PC | 54 | 278 | 29.94 | 18.87 | 15.45 | 0.113 | 1.70 | 35.11 |
样品 | TTI/s | pk⁃HRR/kW·m-2 | THR/MJ·m-2 | av⁃EHC/MJ·kg-1 | TSP/m2 | av⁃COY/kg·kg-1 | av⁃COY2/kg·kg-1 | 残炭率/% |
---|---|---|---|---|---|---|---|---|
GPC | 38 | 678 | 39.5 | 21.05 | 13.05 | 0.119 | 1.81 | 17.22 |
0BN/3TAD/PC | 35 | 570 | 41.0 | 20.87 | 14.83 | 0.124 | 1.78 | 10.69 |
5BN/3TAD/PC | 34 | 374 | 37.1 | 20.15 | 14.31 | 0.128 | 1.73 | 17.98 |
10BN/3TAD/PC | 41 | 319 | 33.25 | 18.90 | 17.02 | 0.120 | 1.68 | 24.99 |
15BN/3TAD/PC | 49 | 304 | 32.65 | 20.05 | 13.74 | 0.101 | 1.79 | 31.66 |
20BN/3TAD/PC | 54 | 278 | 29.94 | 18.87 | 15.45 | 0.113 | 1.70 | 35.11 |
样品 | 密度/g·cm-3 | 温度/℃ | 热扩散系数/mm2·s-1 | 比热容/J·g-1·K-1 | 导热系数/W·m-1·K-1 |
---|---|---|---|---|---|
GPC | 1.114 | 25 | 0.109 | 1.00 | 0.121 |
0BN/3TAD/PC | 1.072 | 25 | 0.134 | 1.18 | 0.168 |
5BN/3TAD/PC | 1.167 | 25 | 0.145 | 1.18 | 0.200 |
10BN/3TAD/PC | 1.166 | 25 | 0.193 | 0.81 | 0.182 |
15BN/3TAD/PC | 1.216 | 25 | 0.242 | 0.95 | 0.279 |
20BN/3TAD/PC | 1.241 | 25 | 0.288 | 1.43 | 0.511 |
样品 | 密度/g·cm-3 | 温度/℃ | 热扩散系数/mm2·s-1 | 比热容/J·g-1·K-1 | 导热系数/W·m-1·K-1 |
---|---|---|---|---|---|
GPC | 1.114 | 25 | 0.109 | 1.00 | 0.121 |
0BN/3TAD/PC | 1.072 | 25 | 0.134 | 1.18 | 0.168 |
5BN/3TAD/PC | 1.167 | 25 | 0.145 | 1.18 | 0.200 |
10BN/3TAD/PC | 1.166 | 25 | 0.193 | 0.81 | 0.182 |
15BN/3TAD/PC | 1.216 | 25 | 0.242 | 0.95 | 0.279 |
20BN/3TAD/PC | 1.241 | 25 | 0.288 | 1.43 | 0.511 |
1 | Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: Areview [J]. Progress in Polymer Science, 2011, 36(7): 914⁃944. |
2 | Samsudin S S, Majid M S A, Jamir M A R, et al. Physical, thermal transport, and compressive properties of epoxy composite filled with graphitic⁃ and ceramic⁃based thermally conductive nanofillers[J]. Polymers, 2022,14 (5):1 014. |
3 | Misiura A I, Mamunya Y P, Kulish M P. Metal⁃filled epoxy composites: mechanical properties and electrical/thermal conductivity[J]. Journal of Macromolecular Science, Part B: Physics, 2020,59 (2): 121⁃136. |
4 | Sheshkar N, Verma G Pandey C, Sharma A K, et al. Enhanced thermal and mechanical properties of hydrophobic graphite⁃embedded polydimethylsiloxane composite[J]. Journal of Polymer Research, 2021, 28(11): 403. |
5 | Krieg A S, King J A, Jaszczak D C, et al. Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets [J]. Journal of Composite Materials. 2018, (52): 3 909⁃3 918. |
6 | Hong H, Kim J U, Kim T I. Effective assembly of nano⁃ceramic materials for high and anisotropic thermal conductivity in a polymer composite[J]. Polymers,2017, 9(9):413. |
7 | He J, Wang H, Qu Q Q, et al. Three⁃dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading[J]. Composites Part A⁃Applied Science and Manufacturing, 2020, 139: 106062. |
8 | Baek Y M, Shin P S, Kim J H, et al. Thermal transfer, interfacial, and mechanical properties of carbon fiber/polycarbonate⁃CNT composites using infrared thermography[J]. Polymer Testing, 2020, DOI: 10.1016/j. polymertesting.2019.106247 . |
9 | Cekon M, Sikula O. Experimental and numerical study on the thermal performance of polycarbonate panels[J]. Journal of Building Engineering, 2020, DOI: 10.1016/j.jobe.2020.101715 . |
10 | Wang J W, Li H R, Li G H, et al. Noncovalent functionalization of boron nitride and its effect on the thermal conductivity of polycarbonate composites[J]. Journal of Applied Polymer Science, 2017, DOI: 10.1002/app.44978 . |
11 | 廖立敏, 李建风, 黄 茜. 阻燃材料的研究及应用综述[J]. 山东化工, 2019, 48(17): 87⁃88. |
LIAO L M, LI J F, HUANG Q. A review of the research and application of flame retardant materials[J]. Shandong Chemical, 2019, 48(17): 87⁃88. | |
12 | 许德焕. 有机硅阻燃剂的合成及其阻燃聚碳酸酯的研究[D]. 常州: 常州大学, 2021. |
13 | 雷祖碧, 马 玫, 胡行俊,等 高阻燃透明PC材料性能的研究 [J]. 塑料助剂, 2010 (1): 39⁃40. |
LEI Z B, MA M, HU X J, et al. Research on the properties of highly flame⁃retardant transparent PC materials[J]. Plastic additives, 2010 (1): 39⁃40. | |
14 | 唐荣芝, 何 航, 马雅琳, 等. 聚碳酸酯用阻燃剂研究进展[J]. 四川化工, 2019, 22(04): 14⁃17. |
TANG R Z, HE H, MA Y L, et al. Research progress on flame retardants for polycarbonate[J]. Sichuan Chemical Industry, 2019, 22(04): 14⁃17. | |
15 | Pape P G, Romenesko D J. The role of silicone powders in reducing the heat release rate and evolution of smoke in flame retardant thermoplastics [J]. Journal of Vinyl and Additive Technology, 1997, 3(3): 225⁃232. |
16 | 邹业成, 申长念. 聚碳酸酯无卤阻燃剂研究进展[J]. 化工中间体, 2013, 10(3): 15⁃18. |
ZOU Y C, SHEN C N. Research progress on polycarbonate halogen⁃free flame retardants[J]. Chemical intermediates, 2013, 10(3): 15⁃18. | |
17 | Ni P, Fang Y Y, Qian L J, et al. Flame⁃retardant behavior of a phosphorus/silicon compound on polycarbonate [J]. Journal of Applied Polymer Science, 2018, 135(6): 45 815⁃45 823. |
18 | Zhang W C, Li X M, Yang R J. Flame retardant mechanisms of phosphorus⁃containing polyhedral oligomeric silsesquioxane (DOPO⁃POSS) in polycarbonate composites[J]. Journal of Applied Polymer Science, 2012, 124(3): 1 848⁃1 857. |
19 | Zhou W Y, Zhang Y T. Progress in intrinsic thermal conductive polymers[J]. China Synthetic Resin and Plastics, 2010, 27 (2) :69⁃73. |
20 | Huang C L, Qian X, Yang R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science and Engineering R⁃Reports, 2018,132: 1⁃22. |
21 | 施 瑶. 高导热聚合物复合材料的制备与性能研究[D]. 上海: 上海师范大学, 2020. |
22 | 杨 悦. 填充型聚合物基导热复合材料的e⁃DPD模拟研究[D]. 合肥: 安徽大学, 2017. |
23 | Mamunya Y P, Davydenko V V, Pissis P, et al. Electrical and thermal conductivity of polymers filled with metal powders[J]. European Polymer Journal, 2002, 38(9): 1 887⁃1 897. |
24 | Zouaoui F, Rouabah F, Nouar Y, et al. Effect of heat treatment on the thermophysical properties of copper⁃powder⁃filled polycarbonate and polycarbonate containing paraffin[J]. Journal of Polymer Engineering, 2019, 39(8): 729⁃735. |
25 | 文 雯, 刘述梅, 傅 轶, 等. 高抗冲导热绝缘PC/PE/Al2O3复合材料的制备与性能[J].高分子材料科学与工程, 2011, 27(05): 137⁃140. |
WEN W, LIU S M, FU Y,et al. Preparation and properties of PC/PE/Al2O3 composites with high impact thermal conductivity and insulation[J]. Polymer Materials Science and Engineering, 2011, 27(05): 137⁃140. | |
26 | King J A, Via M D, Caspary J A, et al. Electrical and thermal conductivity and tensile and flexural properties of carbon nanotube/polycarbonate resins[J]. Journal of Applied Polymer Science, 2010, 118(5):2 512⁃2 520. |
27 | Michael T M, Konrad H, Marco L, et al. Effect of graphite nanoplate morphology on the dispersion and physical properties of polycarbonate based composites[J]. Materials, 2017, 10(5): 545⁃568. |
28 | Xiao C, Leng X Y, Zhang X, et al. Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites[J]. Composites Part A: Applied Science and Manufacturing, 2018,110: 133⁃141. |
29 | Zhou S T, Shi Y, Bai Y, et al. Preparation of thermally conductive polycarbonate/boron nitride composites with balanced mechanical properties[J]. Polymer Composites, 2020,41(12): 5 418⁃5 427. |
30 | 孙 娜, 曾小亮, 陈 鹏, 等. 高导热氮化硼/聚碳酸酯复合材料的制备与性能研究[J]. 集成技术, 2017, 6(6): 15⁃23. |
SUN N, ZENG X L, CHEN P, et al. Preparation and properties of high thermal conductivity boron nitride/polycarbonate composites[J]. Integrated technology, 2017, 6(6): 15⁃23. |
[1] | 郝金灵, 陈雅君, 钱立军. 气凝胶在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(3): 116-125. |
[2] | 徐锦佳, 黄腾, 柏志成, 沈佳豪, 谢清怡, 朱俊辉, 戴进峰, 刘元强, 詹先旭. 壳聚糖⁃磺化石墨烯层层自组装涂层对硬质聚氨酯泡沫的阻燃抑烟性能研究[J]. 中国塑料, 2024, 38(3): 38-43. |
[3] | 张俊 奚望 钱立军 周凤帅 邱勇 王靖宇 张志鹏. 氮化硼/磷杂菲三嗪化合物阻燃导热聚碳酸酯复合材料的制备及其性能研究[J]. , 2024, 38(3): 31-37. |
[4] | 郝金灵 陈雅君 钱立军. 气凝胶在阻燃领域的研究进展[J]. , 2024, 38(3): 116-125. |
[5] | 孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117. |
[6] | 王栋. 金属有机框架基阻燃剂在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(2): 118-125. |
[7] | 贾梦, 许准, 魏思淼, 张庆磊, 许博. 建筑用泡沫材料阻燃研究进展[J]. 中国塑料, 2024, 38(2): 52-60. |
[8] | 佟亚轩, 高海南, 陈礼平, 翁云宣. 生物基气凝胶的改性及功能化研究进展[J]. 中国塑料, 2024, 38(2): 87-94. |
[9] | 赵晓波, 王国泰, 梁淑君. 聚硅氧烷包覆改性聚磷酸铵及其阻燃聚乙烯性能的研究[J]. 中国塑料, 2024, 38(1): 86-91. |
[10] | 张之琪, 李润焘, 杨瑞程, 代云良, 章晓娟, 温变英. 片状FeSiAl/Al2O3共填充聚偏氟乙烯复合材料的吸波导热性能研究[J]. 中国塑料, 2023, 37(9): 44-50. |
[11] | 张慈海, 刘松, 周冬晴, 陈宇, 张婷婷, 钟柳, 刘治国. DOPO基反应型阻燃剂的合成与应用研究进展[J]. 中国塑料, 2023, 37(9): 64-74. |
[12] | 王文惠, 朱惠豪, 李果, 王玉, 武凡, 林镇斌, 马玉录, 谢林生. PP/PC光扩散材料的制备及其抗紫外性能优化[J]. 中国塑料, 2023, 37(8): 8-12. |
[13] | 宫芳芳 陶梦伟 王靖宇 钱立军. 无卤阻燃热塑性聚烯烃弹性体的研究进展[J]. , 2023, 37(6): 123-130. |
[14] | 刘会媛 马闯 关俊霞 李繁麟 杨笑春 张青. 磷化瓜尔胶与APP协同阻燃PLA的性能研究[J]. , 2023, 37(4): 53-59. |
[15] | 黄雅婷, 李连良, 张翼, 汤维, 钱立军. 水性膨胀型钢结构防火涂料研究进展[J]. 中国塑料, 2023, 37(2): 77-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||