
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 118-125.DOI: 10.19491/j.issn.1001-9278.2024.02.017
• 综述 • 上一篇
收稿日期:
2023-11-22
出版日期:
2024-02-26
发布日期:
2024-02-03
作者简介:
王栋(1987—),男,工程师,从事建筑阻燃防火、保温材料研究, wangdong4@ztjs.cn
Received:
2023-11-22
Online:
2024-02-26
Published:
2024-02-03
摘要:
简述了近几年来金属有机框架(MOFs)及其衍生物在阻燃高分子材料领域的应用,重点介绍了MOFs阻燃剂的设计及其对环氧树脂(EP)、聚苯乙烯(PS)、聚氨酯等材料阻燃性能的影响,阐述了可能存在的阻燃机理,并对MOFs阻燃剂未来的发展方向进行了展望。
中图分类号:
王栋. 金属有机框架基阻燃剂在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(2): 118-125.
WANG Dong. Research progress in metal⁃organic framework⁃based flame retardants in flame⁃retardant polymers[J]. China Plastics, 2024, 38(2): 118-125.
1 | Samiee R, Montazeri S, Ramezanzadeh B, et al. Ce⁃MOF nanorods/aluminum hydroxide (AlTH) synergism effect on the fire⁃retardancy/smoke⁃release and thermo⁃mechanical properties of a novel thermoplastic acrylic intumescent composite coating[J]. Chem Eng J, 2022, 428: 132533. |
2 | Feng C, Liu X, Zhu T, et al. Catalytic oxidation of CO on noble metal⁃based catalysts [J]. Environ Sci Pollut Res, 2021, 28: 24 847⁃24 871. |
3 | Chen P, Wang M, Li G, et al. Construction of ZIF-67⁃On⁃UiO-66 catalysts as a platform for efficient overall water splitting [J]. Inorg Chem, 2022, 61(46):18 424⁃18 433. |
4 | Sun T, Zhang S, Xu L, et al. An efficient multifunctional hybrid electrocatalyst: Ni2P nanoparticles on MOF⁃derived Co,N⁃doped porous carbon polyhedrons for oxygen reduction and water splitting [J]. Chem Commun, 2018, 54: 12 101⁃12 104. |
5 | Peralta R A, Huxley M T, Evans J D, et al. Highly active gas phase organometallic catalysis supported within metal⁃organic framework pores [J]. J Am Chem Soc, 2020, 142: 13 533⁃13 543. |
6 | Pan Y T, Zhang Z, Yang R. The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review [J]. Compos Part B⁃Eng, 2020, 199: 108265. |
7 | Song K, Zhang H, Pan Y T, et al. Metal⁃organic framework⁃derived bird's nest⁃like capsules for phosphorous small molecules towards flame retardant polyurea composites [J]. J Colloid Interface Sci, 2023, 643: 489⁃501. |
8 | Song K, Li X, Pan Y T, et al. The influence on flame retardant epoxy composites by a bird's nest⁃like structure of Co⁃based isomers evolved from zeolitic imidazolate framework-67 [J]. Polym Degrad Stab, 2023, 211: 110318. |
9 | Hou Y, Xu Z, Chu F, et al. A review on metal⁃organic hybrids as flame retardants for enhancing fire safety of polymer composites [J]. Compos Part B⁃Eng, 2021, 221: 109014. |
10 | Song K, Pan Y T, Zhang J, et al. Metal⁃organic frameworks⁃based flame⁃retardant system for epoxy resin: a review and prospect [J]. Chem Eng J, 2023, 468: 143653. |
11 | Zhang J, Li Z, Qi X, et al. Size tailored bimetallic metal⁃organic framework (MOF) on graphene oxide with sandwich⁃like structure as functional nano⁃hybrids for improving fire safety of epoxy [J]. Compos Part B⁃Eng, 2020, 188: 107881. |
12 | Hou Y, Qiu S, Xu Z, et al. Which part of metal⁃organic frameworks affects polymers' heat release, smoke emission and CO production behaviors more significantly, metallic component or organic ligand? [J]. Compos Part B⁃Eng, 2021, 223: 109131. |
13 | Chu H, Wu M, Liu X, et al. Uniformly⁃dispersed black phosphorene as flame⁃retardant epoxy composites via iterative dispersion strategy [J]. ACS Appl Nano Mater, 2023, 6: 17 548⁃17 559. |
14 | Tian P X, Li Y D, Weng Y, et al. Reprocessable, chemically recyclable, and flame⁃retardant biobased epoxy vitrimers[J]. Eur Polym J, 2023, 193: 112078. |
15 | Mahajan D S, Sonawane S A, Bari M L, et al. Stannate and surface functionalized molybdate of zinc for enhanced flame retardancy of epoxy nanocomposites [J]. J Appl Polym Sci, 2023, 140: e53610. |
16 | Petit C, Bandosz T J. MOF⁃graphite oxide composites: combining the uniqueness of graphene layers and metal⁃organic frameworks [J]. Adv Mater, 2009, 21: 4 753⁃4 757. |
17 | Yoo D K, Lee G, Mondol M M H, et al. Preparation and applications of metal⁃organic frameworks composed of sulfonic acid [J]. Coord Chem Rev, 2023, 474: 214868. |
18 | Sun M, Hanif A, Wang T, et al. Ambient temperature NO2 removal by reversible NO2 adsorption on copper⁃based metal⁃organic frameworks (MOFs)⁃derived nanoporous adsorbents [J]. Sep Purif Technol, 2023, 314: 123563. |
19 | Petit C, Mendoza B, Bandosz T J. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites [J]. Chem Phys Chem, 2010, 11: 3 678⁃3 684. |
20 | Xu B, Xu W, Wang G, et al. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin [J]. Polym Adv Technol, 2018, 29: 1 733⁃1 743. |
21 | Wang J, Zheng X, Zhu Y, et al. Covalently functionalized hierarchical MnO2@LDH nanostructure as building blocks for fire⁃safe and mechanic⁃robust epoxy composites [J]. Appl Surf Sci, 2022: 153262. |
22 | Nyambo C, Kandare E, Wilkie C A. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate⁃intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid [J]. Polym Degrad Stab, 2009, 94: 513⁃520. |
23 | Pan Y T, Wan J, Zhao X, et al. Interfacial growth of MOF⁃derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites [J]. Chem Eng J, 2017, 330: 1 222⁃1 231. |
24 | Zhang Z, Qin J, Zhang W, et al. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites [J]. Chem Eng J, 2020, 381: 122777. |
25 | Han D, Wang H, Lu T, et al. Scalable manufacturing green core–shell structure flame retardant, with enhanced mechanical and flame⁃retardant performances of polylactic acid [J]. J Polym Environ, 2022, 30: 2 516⁃2 533. |
26 | He T, Guo J, Qi C, et al. Core⁃shell structure flame retardant Salen⁃PZN⁃Cu@Ni⁃Mof microspheres enhancing fire safety of epoxy resin through the synergistic effect [J]. J Polym Res, 2021, 29: 27. |
27 | Guo W, Nie S, Kalali E N, et al. Construction of SiO2@UiO-66 core–shell microarchitectures through covalent linkage as flame retardant and smoke suppressant for epoxy resins [J]. Compos Part B⁃Eng, 2019, 176: 107261. |
28 | Song K, Wang Y, Ruan F, et al. Synthesis of a reactive template⁃induced core–shell PZS@ZIF-67 composite microspheres and its application in epoxy composites [J]. Polymers, 2021, 13: 2646. |
29 | Lv X, Zeng W, Yang Z, et al. Fabrication of ZIF-8@polyphosphazene core⁃shell structure and its efficient synergism with ammonium polyphosphate in flame⁃retarding epoxy resin [J]. Polym Adv Technol, 2020, 31: 997⁃1 006. |
30 | Zhou X, Mu X, Cai W, et al. Design of hierarchical NiCo⁃LDH@PZS hollow dodecahedron architecture and application in high⁃performance epoxy resin with excellent fire safety [J]. ACS Appl Mater Inter, 2019, 11: 41 736⁃41 749. |
31 | Hou B, Song K, Ur Rehman Z, et al. Precise control of a yolk⁃double shell metal⁃organic framework⁃based nanostructure provides enhanced fire safety for epoxy nanocomposites [J]. ACS Appl Mater Inter, 2022, 14: 14 805⁃14 816. |
32 | Song X, Hou B, Han Z, et al. Dual nucleation sites induced by ZIF-67 towards mismatch of polyphosphazene hollow sub⁃micron polyhedrons and nanospheres in flame retardant epoxy matrix [J]. Chem Eng J, 2023, 470: 144278. |
33 | Hou B, Wang Y, Li B, et al. Bio⁃based flame⁃retardant plasticizers derived from L⁃lactic acid: Effects of valence states of phosphorus structure on fire safety, flexibility and transparency of poly(lactic acid) [J]. Chem Eng J, 2023, 474: 145563. |
34 | Zhang J, Li Z, Zhang L, et al. Green synthesis of biomass phytic acid⁃functionalized UiO-66⁃NH2 hierarchical hybrids toward fire safety of epoxy resin [J]. ACS Sustainable Chem Eng, 2019, 8: 994⁃1 003. |
35 | Huang R, Guo X, Ma S, et al. Novel phosphorus⁃nitrogen⁃containing ionic liquid modified metal⁃organic framework as an effective flame retardant for epoxy resin [J]. Polymers, 2020, 12: 108. |
36 | Huang J, Zhao Z, Chen T, et al. Preparation of highly dispersed expandable graphite/polystyrene composite foam via suspension polymerization with enhanced fire retardation [J]. Carbon, 2019, 146: 503⁃512. |
37 | Hou Y, Hu W, Gui Z, et al. Preparation of Metal⁃organic frameworks and their application as flame retardants for polystyrene [J]. Industrial & Engineering Chemistry Research, 2017, 56: 2 036⁃2 045. |
38 | Hou Y, Hu W, Zhou X, et al. Vertically aligned nickel 2⁃methylimidazole metal⁃organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene [J]. Industrial & Engineering Chemistry Research, 2017, 56: 8 778⁃8 786. |
39 | Chen W, Jiang Y, Qiu R, et al. Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene [J]. Macromol Res, 2020, 28: 42⁃50. |
40 | Wang X, Wu T, Hong J, et al. Organophosphorus modified hollow bimetallic organic frameworks: Effective adsorption and catalytic charring of pyrolytic volatiles [J]. Chem Eng J, 2021, 421: 129697. |
41 | Zhao H, Yuan B, Zhan Y, et al. Upgrading the pore⁃size scale of MIL-53 from microporous to macroporous for adsorbing triethyl phosphate and reducing the fire risk of polystyrene [J]. Compos Part A⁃Appl S, 2022, 159: 107003. |
42 | Baochai L, Bakar A A, Mohamad Z. An overview of the recent advances in flame retarded poly(lactic acid) [J]. Polym Adv Technol, 2023, 34: 1 435⁃1 450. |
43 | Cheng X W, Guan J P, Tang R C, et al. Improvement of flame retardancy of poly(lactic acid) nonwoven fabric with a phosphorus⁃containing flame retardant [J]. J Ind Text, 2015, 46: 914⁃928. |
44 | Elangovan D, Yuzay I E, Selke S E M, et al. Poly(L⁃lactic acid) metal organic framework composites: optical, thermal and mechanical properties [J]. Polym Int, 2012, 61: 30⁃37. |
45 | Zhang M, Shi X, Dai X, et al. Improving the crystallization and fire resistance of poly(lactic acid) with nano⁃ZIF-8@GO [J]. J Mater Sci, 2018, 53: 7 083⁃7 093. |
46 | Wang X, Wang S, Wang W, et al. The flammability and mechanical properties of poly (lactic acid) composites containing Ni⁃MOF nanosheets with polyhydroxy groups [J]. Compos Part B⁃Eng, 2020, 183: 107568. |
47 | Hou Y, Liu L, Qiu S, el at. DOPo⁃modified two⁃dimensional co⁃based metal–organic framework: preparation and application for enhancing fire safety of poly(lactic acid) [J]. ACS Appl Mater Inter, 2018, 10: 8 274⁃8 286. |
48 | Zhang M, Gao Y, Zhan Y, et al. Preparing the degradable, flame⁃retardant and low dielectric constant nanocomposites for flexible and miniaturized electronics with poly(lactic acid), nano ZIF-8@GO and resorcinol di(phenyl phosphate) [J]. Materials 2018, 11(9): 1756. |
49 | Chen X, Feng X, Jiao C. Combustion and thermal degradation properties of flame⁃retardant TPU based on EMIMPF6 [J]. J Therm Anal Calorim, 2017, 129: 851⁃857. |
50 | Li M, Hao F, Chen Y, et al. Facile alteration of the molecular structure of phosphonamide for efficient flame retardancy in TPU [J]. Compos Commun, 2023, 44: 101759. |
51 | Cheng J, Ma D, Li S, et al. Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams [J]. Polymers 2020, 12(2): 347. |
52 | Wang H, Qiao H, Guo J, et al. Preparation of cobalt⁃based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU) [J]. Compos Part B⁃Eng, 2020, 182: 107498. |
53 | Hou Y, Xu Z, Yuan Y, et al. Nanosized bimetal⁃organic frameworks as robust coating for multi⁃functional flexible polyurethane foam: rapid oil⁃absorption and excellent fire safety [J]. Compos Sci Technol, 2019, 177: 66⁃72. |
54 | Zhao S, Yin L, Zhou Q, et al. In situ self⁃assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: Towards for highly efficient oil spill cleanup and fire safety [J]. Appl Surf Sci, 2020, 506: 144700. |
55 | Xu B, Xu W, Liu Y, et al. Surface modification of α⁃zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer [J]. Polym Adv Technol, 2018, 29: 2,816⁃2,826. |
56 | Zhang Y, Zeng X, Li H, et al. Zirconium phosphate functionalized by hindered amine: A new strategy for effectively enhancing the flame retardancy of addition⁃cure liquid silicone rubber [J]. Mater Lett, 2016, 174: 230⁃233. |
57 | Ahmad H, Rodrigue D. Crosslinked polyethylene: A review on the crosslinking techniques, manufacturing methods, applications, and recycling [J]. Polymer Engineering & Science, 2022, 62: 2 376⁃2 401. |
58 | Blake N, Turner Z R, Buffet J C, et al. Flame retardant phosphonate⁃functionalised polyethylenes [J]. Polym Chem, 2023, 14: 3 175⁃3 185. |
59 | Xie J, X.Shi, Zhang M, et al. Improving the flame retardancy of polypropylene by nano metal⁃organic frameworks and bioethanol coproduct [J]. Fire Mater, 2019, 43: 373⁃380. |
60 | Sai T, Ran S, Guo Z, et al. A Zr⁃based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate [J]. Compos Part B⁃Eng, 2019, 176: 107198. |
61 | Zhou S, Apostolopoulou⁃Kalkavoura V, Tavares da Costa M V, et al. Elastic aerogels of cellulose nanofibers@metal⁃organic frameworks for thermal insulation and fire retardancy [J]. Nano⁃Micro Lett, 2019, 12: 9. |
62 | Nabipour H, Nie S, Wang X, et al. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants [J]. Cellulose, 2020, 27: 2 237⁃2 251. |
63 | Zhou Z, Li Y, Fang T, et al. MOF⁃derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium⁃sulfur batteries [J]. Nanomaterials, 2019, 9(11): 1574. |
64 | Zeng G, Zhao J, Feng C, et al. Flame⁃retardant bilayer separator with multifaceted van der waals interaction for lithium⁃ion batteries [J]. ACS Appl Mater Inter, 2019, 11: 26 402⁃26 411. |
[1] | 李宁利, 王瑞, 常紫攀, 栗培龙. 沥青路面水性聚氨酯丙烯酸热反射涂料制备[J]. 中国塑料, 2024, 38(1): 21-27. |
[2] | 崔成志, 曹金星, 刘建兰, 张辉. 聚乳酸/热塑性聚氨酯共混材料研究进展[J]. 中国塑料, 2023, 37(9): 75-82. |
[3] | 周龙, 杜国勇, 邓春萍. 超亲水⁃水下超疏油聚氨酯海绵的制备及其油水分离性能研究[J]. 中国塑料, 2023, 37(8): 28-37. |
[4] | 郝春波, 肖大君, 刘全中, 郑树松, 王春, 李春晖, 姚秀超. 高流动抗冲聚苯乙烯制备及性能研究[J]. 中国塑料, 2023, 37(2): 1-6. |
[5] | 杨晨, 唐晓东, 李晶晶, 冯雪峰, 曹晔飞, 高志强. 双酚A型环氧树脂合成技术进展[J]. 中国塑料, 2023, 37(2): 106-112. |
[6] | 韦代东, 李惠枝, 曾娟娟, 赵传国, 李士强. 生物基聚氨酯抗涂鸦自清洁涂料的制备及性能[J]. 中国塑料, 2023, 37(2): 15-21. |
[7] | 翁城武, 郑玉婴. 耐低温慢回弹聚氨酯海绵材料制备及性能研究[J]. 中国塑料, 2023, 37(2): 51-55. |
[8] | 王泽辉, 王振军, 王笑风, 杨博, 李帅. 配方组成对聚氨酯注浆材料抗压强度影响的研究[J]. 中国塑料, 2023, 37(2): 7-14. |
[9] | 孙文潇, 杨帆, 侯梦宗, 贺丹丹, 吴慧, 刘强, 张宏. 环境中的微塑料污染及降解[J]. 中国塑料, 2023, 37(11): 117-126. |
[10] | 王芳, 郝建薇. 竹基多孔碳协同二乙基次膦酸铝催化阻燃环氧树脂及作用机理研究[J]. 中国塑料, 2023, 37(10): 70-76. |
[11] | 余敏. GC⁃MS/MS法检测聚氨酯泡沫塑料中14种有机磷酸酯阻燃剂[J]. 中国塑料, 2023, 37(10): 8-14. |
[12] | 王芳 郝建薇. 竹基多孔碳协同二乙基次膦酸铝催化阻燃环氧树脂及作用机理研究[J]. , 2023, 37(10): 70-76. |
[13] | 张伟程, 胡祥, 罗鸿兴, 金卉, 游峰, 江学良, 姚楚. 中空玻璃微珠填充聚氨酯发泡材料的吸声性能与动态力学性能研究[J]. 中国塑料, 2023, 37(1): 38-45. |
[14] | 周新星, 郑玉婴, 陈乘鑫, 孔繁盛. 热塑性聚氨酯/石墨烯改性聚氨酯注浆材料的制备与性能研究[J]. 中国塑料, 2023, 37(1): 54-59. |
[15] | 刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||