
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (1): 133-143.DOI: 10.19491/j.issn.1001-9278.2023.01.019
• 综述 • 上一篇
收稿日期:
2022-09-22
出版日期:
2023-01-26
发布日期:
2023-01-26
通讯作者:
辛菲(1979-),男,教授,从事聚合物基复合材料及阻燃高分子材料的研究,xinfei@th.btbu.edu.cn基金资助:
LIU Haoyu1, XIN Fei1,2,3,4(), DU Jiaying1, FAN Xiaoling1
Received:
2022-09-22
Online:
2023-01-26
Published:
2023-01-26
Contact:
XIN Fei
E-mail:xinfei@th.btbu.edu.cn
摘要:
综述了近5年来的无卤阻燃聚酯复合材料的研究进展。讨论了有机阻燃剂(如磷酸盐、磷酸酯等)、无机阻燃剂(如红磷、蒙脱土等)和有机无机配合阻燃体系(如氢氧化铝/聚磷酸铵/可膨胀石墨等)等几大类阻燃体系阻燃聚酯后复合材料的力学性能、热稳定性、相容性、抑烟性以及不同添加量下热释放速率的变化,并对高效、环境友好的无卤阻燃聚酯复合材料的前景进行了展望。
中图分类号:
刘昊育, 辛菲, 杜家盈, 樊晓玲. 无卤阻燃聚酯复合材料研究进展[J]. 中国塑料, 2023, 37(1): 133-143.
LIU Haoyu, XIN Fei, DU Jiaying, FAN Xiaoling. Research progress in halogen⁃free flame⁃retardant polyester composites[J]. China Plastics, 2023, 37(1): 133-143.
样品 | LOI/% | UL 94 等级 | PHRR/ kW·m-2 | 质量保 留率/% | 引用 文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | DP⁃DE | 30.5 | V⁃0 | - | 12.99 | [ |
PET | DP | 35.2 | 无熔滴 | - | 16.32 | [ |
PBT | DP | 28.5 | 少熔滴 | - | 2.56 | [ |
PET | AD | 43.2 | 无熔滴 | - | 5.59 | [ |
PBT | AD | 29.7 | 少熔滴 | - | 2.38 | [ |
PET | PZS_CLNT | 34.4 | V⁃0 | 506.3 | 21.5 | [ |
PET PET PET | PZS_SP PZS_NT PZS_BNT | 33.1 32.5 32.8 | V⁃0 V⁃0 V⁃0 | 530.7 525.7 504.2 | 20.8 13.8 15.4 | [ [ [ |
PET/PP | BDPMC | - | - | 408 | 5.79 | [ |
PET UPR WT⁃UPR TPEE PET UPR r⁃PET PET/GF PET/GF UPR/GF UPR UPR/PF UPR UPR PBT PET PET | PPSFR ADP/DMPY ADP/DMPY ADP/CFA MPPNW PMVDOS ATH RPs BPs ATH/APP/EG APP/ZB/MMT/DMMP APP/MMT B⁃Si/GO/APP/MMT 硅藻土(Dia)⁃磷酸三苯酯(TPP)⁃APP GO⁃IFR(P/N阻燃剂) 硅烷化碳微球基三聚氰胺磷酸盐(SiMP⁃CMS) 聚磷腈改性次磷酸锰(PZS@MnHP) | 40 29.3 29.5 28.5 32.1 29.4 26.9 23.1 29.5 43 31.3 29.2 28.5 26.6 25.4 27.7 29.6 | V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 少烟 V⁃2 V⁃0 V⁃0 V⁃0 V⁃1 V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 | - 401.6 289.1 198.8 - 260.8 - 215.9 279.6 - 280 - 138 405.7 - 221.7 236.4 | 20.1 18.1 17.8 11.3 20.1 18.9 37.5 - - - 31.3 24.8 16.3 33.6 9.5 - 28.3 | [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ |
样品 | LOI/% | UL 94 等级 | PHRR/ kW·m-2 | 质量保 留率/% | 引用 文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | DP⁃DE | 30.5 | V⁃0 | - | 12.99 | [ |
PET | DP | 35.2 | 无熔滴 | - | 16.32 | [ |
PBT | DP | 28.5 | 少熔滴 | - | 2.56 | [ |
PET | AD | 43.2 | 无熔滴 | - | 5.59 | [ |
PBT | AD | 29.7 | 少熔滴 | - | 2.38 | [ |
PET | PZS_CLNT | 34.4 | V⁃0 | 506.3 | 21.5 | [ |
PET PET PET | PZS_SP PZS_NT PZS_BNT | 33.1 32.5 32.8 | V⁃0 V⁃0 V⁃0 | 530.7 525.7 504.2 | 20.8 13.8 15.4 | [ [ [ |
PET/PP | BDPMC | - | - | 408 | 5.79 | [ |
PET UPR WT⁃UPR TPEE PET UPR r⁃PET PET/GF PET/GF UPR/GF UPR UPR/PF UPR UPR PBT PET PET | PPSFR ADP/DMPY ADP/DMPY ADP/CFA MPPNW PMVDOS ATH RPs BPs ATH/APP/EG APP/ZB/MMT/DMMP APP/MMT B⁃Si/GO/APP/MMT 硅藻土(Dia)⁃磷酸三苯酯(TPP)⁃APP GO⁃IFR(P/N阻燃剂) 硅烷化碳微球基三聚氰胺磷酸盐(SiMP⁃CMS) 聚磷腈改性次磷酸锰(PZS@MnHP) | 40 29.3 29.5 28.5 32.1 29.4 26.9 23.1 29.5 43 31.3 29.2 28.5 26.6 25.4 27.7 29.6 | V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 少烟 V⁃2 V⁃0 V⁃0 V⁃0 V⁃1 V⁃0 V⁃0 V⁃0 V⁃0 V⁃0 | - 401.6 289.1 198.8 - 260.8 - 215.9 279.6 - 280 - 138 405.7 - 221.7 236.4 | 20.1 18.1 17.8 11.3 20.1 18.9 37.5 - - - 31.3 24.8 16.3 33.6 9.5 - 28.3 | [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ |
样品 | LOI/% | UL 94等级 | PHRR/kW·m-2 | 质量保留率/% | 引用文献 | |
---|---|---|---|---|---|---|
基体材料 | 特征单体 | |||||
PET | 双酚A | 25 | - | 773.1 | 19.2 | [ |
PET | 双酚F | 26 | V⁃2 | 390.3 | 24.3 | [ |
PET | 邻苯二甲酰亚胺(HPI) | 33 | V⁃0 | 276 | - | [ |
PET | PHPI(对位) | 30 | V⁃0 | 313.1 | - | [ |
样品 | LOI/% | UL 94等级 | PHRR/kW·m-2 | 质量保留率/% | 引用文献 | |
---|---|---|---|---|---|---|
基体材料 | 特征单体 | |||||
PET | 双酚A | 25 | - | 773.1 | 19.2 | [ |
PET | 双酚F | 26 | V⁃2 | 390.3 | 24.3 | [ |
PET | 邻苯二甲酰亚胺(HPI) | 33 | V⁃0 | 276 | - | [ |
PET | PHPI(对位) | 30 | V⁃0 | 313.1 | - | [ |
样品 | LOI/% | UL 94等级 | PHRR/ kW·m-2 | 质量保留率/ % | 引用 文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | AlPi | - | V⁃2 | 216 | - | [ |
PET | 尿素甲基三甲氧基硅烷(MTMS) | 28.5 | V⁃1 | - | 34.8 | [ |
PET⁃COT | 聚烯丙胺盐酸盐(PAH)、三聚氰胺(MEL)和聚磷酸铵(APP) | 28.4 | V⁃0 | - | - | [ |
样品 | LOI/% | UL 94等级 | PHRR/ kW·m-2 | 质量保留率/ % | 引用 文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | AlPi | - | V⁃2 | 216 | - | [ |
PET | 尿素甲基三甲氧基硅烷(MTMS) | 28.5 | V⁃1 | - | 34.8 | [ |
PET⁃COT | 聚烯丙胺盐酸盐(PAH)、三聚氰胺(MEL)和聚磷酸铵(APP) | 28.4 | V⁃0 | - | - | [ |
样品 | LOI/% | UL 94 等级 | PHRR/kW·m-2 | 质量保留率/% | 引用文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | 磷酸化壳聚糖、纳米银粒子 | 24.3 | - | - | - | [ |
PET | PA、CS、APP、十八胺(ODA) | 29.2 | 无熔滴 | 395.1 | 38 | [ |
PET | 植酸铵(APA)、CD | 29.5 | 自熄 | 158.3 | 31.5 | [ |
PET UPR PET | 淀粉、玉米须、醋酸锌粒子 单宁酸基微胶囊 改性单宁酸、丙烯酸酯、磷酸酯 | - 30.8 - | 无熔滴 V⁃0 V⁃0 | - 234.4 268 | - 28.2 40.2 | [ [ [ |
样品 | LOI/% | UL 94 等级 | PHRR/kW·m-2 | 质量保留率/% | 引用文献 | |
---|---|---|---|---|---|---|
基体材料 | 阻燃剂 | |||||
PET | 磷酸化壳聚糖、纳米银粒子 | 24.3 | - | - | - | [ |
PET | PA、CS、APP、十八胺(ODA) | 29.2 | 无熔滴 | 395.1 | 38 | [ |
PET | 植酸铵(APA)、CD | 29.5 | 自熄 | 158.3 | 31.5 | [ |
PET UPR PET | 淀粉、玉米须、醋酸锌粒子 单宁酸基微胶囊 改性单宁酸、丙烯酸酯、磷酸酯 | - 30.8 - | 无熔滴 V⁃0 V⁃0 | - 234.4 268 | - 28.2 40.2 | [ [ [ |
1 | Velencoso M M, Battig A, Markwart J C, et al. Molecular firefighting⁃how modern phosphorus chemistry can help solve the challenge of flame retardancy[J]. Angew Chem Int Ed Engl, 2018, 57(33): 10 450⁃10 467. |
2 | He W, Song P, Yu B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science, 2020, 114:100687. |
3 | Liu Y, Zhao W, Yu X, et al. Preparation of dyeing, flame retardant and anti⁃dripping polyethylene terephthalate fibers based on natural sodium copper chlorophyll dyeing and intercalation of phosphorylated sucrose fatty acid ester[J]. Composites Part B: Engineering, 2022, 245:110194. |
4 | Cong K, Liu Z, He J, et al. Preparation and performance of polyether elastomer with a combination of polyurethane and polytriazole[J]. Journal of Applied Polymer Science, 2021, 139(12):51842. |
5 | Liu B W, Zhao H B, Wang Y Z. Advanced flame⁃retardant methods for polymeric materials[J]. Adv Mater, doi:10.1002/adma.202107905 . |
6 | Ao X, Du Y, Yu D, et al. Synthesis, characterization of a DOPO⁃based polymeric flame retardant and its application in polyethylene terephthalate[J]. Progress in Natural Science: Materials International, 2020, 30(2): 200⁃207. |
7 | Salmeia K A, Gooneie A, Simonetti P, et al. Comprehensive study on flame retardant polyesters from phosphorus additives[J]. Polymer Degradation and Stability, 2018, 155: 22⁃34. |
8 | Zhu Y, Wu W, Xu T, et al. Morphology⁃controlled synthesis of polyphosphazene⁃based micro⁃ and nano⁃materials and their application as flame retardants[J]. Polymers (Basel), 2022, 14(10):2 072⁃2 084. |
9 | Salaün F, Creach G, Rault F, et al. Microencapsulation of bisphenol⁃A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate[J]. Polymer Degradation and Stability, 2013, 98(12): 2 663⁃2 671. |
10 | Tian X J, Huang S, Wang J J, et al. Synthesis and properties of polyphosphoester and diphenyl phosphoroxy derivative for flame retardant poly(ethylene terephthalate)[J]. Journal of Photopolymer Science and Technology, 2018, 31(6):689⁃697. |
11 | Liu L, Xu Y, Xu M, et al. An efficient synergistic system for simultaneously enhancing the fire retardancy, moisture resistance and electrical insulation performance of unsaturated polyester resins[J]. Materials & Design, 2020, 187:108302. |
12 | Liu C, Zhang L, Mu L, et al. Synergistic effects between a triazine⁃based charring agent and aluminum phosphinate on the intumescent flame retardance of thermoplastic polyether ester[J]. Journal of Macromolecular Science, Part A, 2019, 56(7): 723⁃732. |
13 | Li T, Li S, Ma T, et al. Flame‐retardant poly (ethylene terephthalate) enabled by a novel melamine polyphosphate nanowire[J]. Polymers for Advanced Technologies, 2019, 31(4): 795⁃806. |
14 | Song D, He C, Zhang G, et al. The effect of a polymeric flame retardant containing phosphorus–sulfur–silicon and a caged group on unsaturated polyester resin[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32(5): 1 902⁃1 912. |
15 | Zhang M, Ye W, Liao Z. Preparation, characterization and properties of flame retardant unsaturated polyester resin based on r⁃PET[J]. Journal of Polymers and the Environment, 2021, 30(5): 1 984⁃1 994. |
16 | Xiao Y, Li J, Wu J, et al. Glass fiber reinforced PET modified by few‐layer black phosphorus[J]. Polymers for Advanced Technologies, 2021, 32(9): 3 515⁃3 522. |
17 | Gunes O C, Gomek R, Tamar A, et al. Comparative study on flame retardancy, thermal, and mechanical properties of glass fiber reinforced polyester composites with ammonium polyphosphate, expandable graphite, and aluminum tri⁃hydroxide[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6 211⁃6 218. |
18 | Jiang M, Zhang Y, Yu Y, et al. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate[J]. Journal of Applied Polymer Science, 2019, 136(11):47180. |
19 | Hassan A, Hau L Y, Hasan M. Effect of ammonium polyphosphate on flame retardancy, thermal stability, and mechanical properties of unsaturated polyester/phenolic/montmorillonite nanocomposites[J]. Advances in Polymer Technology, 2017, 36(3): 278⁃283. |
20 | Li J, Gao M, Zheng Y, et al. Effects of low‐load boron/silicon‐based graphene oxide on combustion and thermal degradation of flame‐retardant unsaturated polyester resin[J]. Macromolecular Materials and Engineering, 2020, 305(12):454⁃467. |
21 | Chen Z, Jiang M, Chen Z, et al. Preparation and characterization of a microencapsulated flame retardant and its flame⁃retardant mechanism in unsaturated polyester resins[J]. Powder Technology, 2019, 354: 71⁃81. |
22 | Li Z, Li W, Liao L, et al. Preparation and properties of polybutylene‐terephthalate/graphene oxide in situ flame‐retardant material[J]. Journal of Applied Polymer Science, 2020, 137(40):49214. |
23 | Xue B, Qin R, Wang J, et al. Construction of carbon microspheres⁃based silane melamine phosphate hybrids for flame retardant poly(ethylene terephthalate)[J]. Polymers (Basel), 2019, 11(3):545⁃561. |
24 | Li T, Li S, Ma T, et al. Novel organic⁃inorganic hybrid polyphosphazene modified manganese hypophosphite shuttles towards the fire retardance and anti⁃dripping of PET[J]. European Polymer Journal, 2019, 120:109270. |
25 | Goedderz D, Weber L, Markert D, et al. Flame retardant polyester by combination of organophosphorus compounds and an NOR radical forming agent[J]. Journal of Applied Polymer Science, 2019, 137(1):47876. |
26 | Bifulco A, Varganici C D, Rosu L, et al. Recent advances in flame retardant epoxy systems containing non⁃reactive DOPO based phosphorus additives[J]. Polymer Degradation and Stability, 2022, 200:109962. |
27 | Viretto A, Sonnier R, Taguet A, et al. Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide[J]. Fire and Materials, 2016, 40(3): 445⁃463. |
28 | Cai W, Wang B⁃B, Wang X, et al. Recent progress in two⁃dimensional nanomaterials following graphene for improving fire safety of polymer (nano)composites[J]. Chinese Journal of Polymer Science, 2021, 39(8): 935⁃956. |
29 | Zhou X, Qiu S, Cai W, et al. Construction of hierarchical MoS2@TiO2 structure for the high performance bimaleimide system with excellent fire safety and mechanical properties[J]. Chemical Engineering Journal, 2019, 369: 451⁃462. |
30 | Cai W, Cai T, He L, et al. Natural antioxidant functionalization for fabricating ambient⁃stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane[J]. J Hazard Mater, 2020, 387: 121971. |
31 | Wang Q⁃W, Zhang H⁃B, Liu J, et al. Multifunctional and water⁃resistant mxene⁃decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7):1806819. |
32 | Hou Y, Liu L, Qiu S, et al. DOPO⁃modified two⁃eimensional co⁃based metal⁃organic framework: preparation and application for enhancing fire safety of poly(lactic acid)[J]. ACS Appl Mater Interfaces, 2018, 10(9): 8 274⁃8 286. |
33 | Chen Z, Jiang M, Zhang Q, et al. Synergistic effect of combined dimethyl methylphosphonate with aluminum hydroxide or ammonium polyphosphate retardant systems on the flame retardancy and thermal properties of unsaturated polyester resin[J]. International Journal of Polymer Analysis and Characterization, 2017, 22(6): 509⁃518. |
34 | Xue B, Qin R, Shao M, et al. Improving the flame retardancy of PET fiber by constructing the carbon microspheres based melamine polyphosphate powder[J]. The Journal of The Textile Institute, 2019, 111(4): 597⁃603. |
35 | Khanal S, Lu Y, Dang L, et al. Improving the flame retardancy of intumescent flame retardant/high‐density polyethylene composites using surfactant‐modified montmorillonite clay[J]. Journal of Applied Polymer Science, 2021, 139(15):51940. |
36 | Cheng G, Xuan Z, Tang Z, et al. Flame‐retardant behavior and mechanism of the SBR/MMT composites modified by melamine matrix modifier[J]. Journal of Applied Polymer Science, 2021, 138(27):50632. |
37 | Liu J, Zeng L, Ai L, et al. Preparation of melamine borate coated red phosphorus microcapsules and use of zinc borate as synergistic flame retardant in polyethylene[J]. Journal of Vinyl and Additive Technology, 2022, 28(3): 591⁃603. |
38 | Xu Y, Zhou R, Mu J, et al. Synergistic flame retardancy of linear low⁃density polyethylene with surface modified intumescent flame retardant and zinc borate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640:128400. |
39 | Peng Y, Niu M, Qin R, et al. Study on flame retardancy and smoke suppression of PET by the synergy between Fe2O3 and new phosphorus⁃containing silicone flame retardant[J]. High Performance Polymers, 2020, 32(8): 871⁃882. |
40 | Guo D⁃M, Chen X⁃Q, Tang L, et al. PET⁃based copolyesters with bisphenol A or bisphenol F structural units: Their distinct differences in pyrolysis behaviours and flame⁃retardant performances[J]. Polymer Degradation and Stability, 2015, 120: 158⁃168. |
41 | Liu B W, Chen L, Guo D M, et al. Fire⁃safe polyesters enabled by end⁃group capturing chemistry[J]. Angew Chem Int Ed Engl, 2019, 58(27): 9 188⁃9 193. |
42 | Liu B⁃W, Lei Y⁃F, Liu X⁃F, et al. Small change, big impact: simply tailoring the substitution position towards significant improvement of flame retardancy[J]. Composites Part B: Engineering, 2021, 223:109109. |
43 | Zhao H B, Wang Y Z. Design and synthesis of PET⁃based copolyesters with flame⁃retardant and antidripping performance[J]. Macromol Rapid Commun, 2017, 38(23):1700451. |
44 | Didane N, Giraud S, Devaux E. Fire performances comparison of back coating and melt spinning approaches for PET covering textiles[J]. Polymer Degradation and Stability, 2012, 97(7): 1 083⁃1 089. |
45 | Younis A A. Optimization of mechanical, thermal, and ignition properties of polyester fabric using urea and phosphoric acid[J]. Journal of Industrial Textiles, 2018, 49(6): 791⁃808. |
46 | Liu X, Meng X, Sun J, et al. Improving the flame retardant properties of polyester‐cotton blend fabrics by introducing an intumescent coating via layer by layer assembly[J]. Journal of Applied Polymer Science, 2020, 137(41):49253. |
47 | Guo J, Cang D, Zhao Z, et al. Fabrication of superhydrophobic and flame⁃retardant polyethylene terephthalate fabric through a fluorine⁃free layer⁃by⁃layer technique[J]. International Journal of Chemical Reactor Engineering, doi:10.1515/ijcre-2022-0010 . |
48 | Hatami M, Sharifi A, Karimi⁃Maleh H, et al. Simultaneous improvements in antibacterial and flame retardant properties of PET by use of bio⁃nanotechnology for fabrication of high performance PET bionanocomposites[J]. Environ Res, 2022, 206: 112281. |
49 | Guo Q, Yang Y, Li L, et al. Construction of bio‐safety flame retardant coatings on polyethylene terephthalate fabric with ammonium phytate and cyclodextrin[J]. Polymers for Advanced Technologies, 2021, 32(11): 4 440⁃4 449. |
50 | Amani A, Montazer M, Mahmoudirad M. Low starch/corn silk/ZnO as environmentally friendly nanocomposites assembling on PET fabrics[J]. Int J Biol Macromol, 2021, 170: 780⁃792. |
51 | Gao M, Wang Y, Chen X, et al. A mussel⁃inspired intumescent flame⁃retardant unsaturated polyester resin system[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1 097⁃1 106. |
52 | Li Y, Qu Z, Wu K, et al. A bio⁃derived char⁃forming strategy for surface fireproofing: Functionalization of UV⁃curing flame⁃retardant coating with vinyl⁃modified tannic acid[J]. European Polymer Journal, 2021, 148:110358. |
53 | Quartinello F, Kremser K, Vecchiato S, et al. Increased flame retardancy of enzymatic functionalized PET and nylon fabrics via DNA immobilization[J]. Front Chem, 2019, 7: 685⁃697. |
54 | Suriani M J, Zainudin H A, Ilyas R A, et al. Kenaf fiber/PET yarn reinforced epoxy fybrid polymer composites: morphological, tensile, and flammability properties[J]. Polymers (Basel), 2021, 13(9):1 532⁃1 549. |
55 | Gadkari R R, Gupta A, Teke U, et al. A sustainable way for surface functionalisation of PET nonwoven with novel chitosan⁃cinnamaldehyde cross⁃linked nanoparticles[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 214⁃223. |
56 | Tong C, Zhang S, Zhong T, et al. Highly fibrillated and intrinsically flame⁃retardant nanofibrillated cellulose for transparent mineral filler⁃free fire⁃protective coatings[J]. Chemical Engineering Journal, 2021, 419:129400. |
[1] | 杨金, 陈鹏然, 高培鑫. DIDOPO与POSS/EG协同阻燃环氧树脂泡沫及机理研究[J]. 中国塑料, 2022, 36(9): 38-45. |
[2] | 徐伟华, 郑宇, 沈向阳, 张炎, 刘桔文, 严石静. 不同POSS对磷⁃硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36(4): 115-120. |
[3] | 田保政. 烷基次膦酸盐阻燃剂复配体系的研究进展[J]. 中国塑料, 2022, 36(2): 197-208. |
[4] | 吕强. 无卤阻燃永久抗静电玻璃纤维增强聚酰胺6材料的研制[J]. 中国塑料, 2021, 35(7): 58-62. |
[5] | 樊晓玲, 辛菲, 蔡丽云. 金属有机骨架材料多功能阻燃聚合物应用研究进展[J]. 中国塑料, 2021, 35(6): 130-140. |
[6] | 宋昆朋, 王银杰, 刘吉平, 方祝青, 杨威威, 郑东森. 磷腈化合物在阻燃聚合物领域的研究进展[J]. 中国塑料, 2021, 35(2): 107-118. |
[7] | 唐巧林, 赵雨, 张凯鑫, 余燕莉, 李年玲, 张雨衡, 胡佳玲, 钟柳, 陈明军, 刘治国. 自制高效无卤含磷阻燃剂阻燃环氧树脂研究[J]. 中国塑料, 2021, 35(11): 111-119. |
[8] | 张亚斌 李响 王露蓉 郭军红 田力 崔锦峰. 石墨烯阻燃聚合物的研究进展[J]. 中国塑料, 2018, 32(09): 17-24. |
[9] | 彭民乐, 岑茵, 何继辉, 佟伟. 聚碳酸酯无卤阻燃剂阻燃机理及其发展趋势[J]. 中国塑料, 2017, 31(03): 1-6 . |
[10] | 姜定, 杨成志, 秦军, 田瑶珠. UF/MPOP与PEA/MPOP对木材燃烧性能的影响[J]. 中国塑料, 2016, 30(10): 32-35 . |
[11] | 邵佳丽, 郭正虹. TPP和MBS对PC/ABS合金性能的影响[J]. 中国塑料, 2015, 29(12): 14-17 . |
[12] | 许国志, 谷晓昱, 张胜. 含磷阻燃剂与硼酸锌协效阻燃聚酰胺11的研究[J]. 中国塑料, 2015, 29(07): 92-95 . |
[13] | 冯坤豪, 吴樊, 陈美玲, 张普玉. 无卤阻燃聚丙烯的研究进展[J]. 中国塑料, 2015, 29(06): 7-12. |
[14] | 刘燕琴, 李建厂, 丁雪佳, 朱杰克, 张龙. 阻燃双酚A型聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物合金研究进展[J]. 中国塑料, 2014, 28(05): 11-15 . |
[15] | 路琴 杨明. 热塑性聚合物/木纤维复合材料的阻燃研究进展[J]. 中国塑料, 2013, 27(09): 11-16 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||