
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (6): 130-140.DOI: 10.19491/j.issn.1001-9278.2021.06.020
• 综述 • 上一篇
收稿日期:
2021-01-12
出版日期:
2021-06-26
发布日期:
2021-06-23
作者简介:
樊晓玲(1996—),女,在读硕士研究生,基金资助:
FAN Xiaoling(), XIN Fei(
), CAI Liyun
Received:
2021-01-12
Online:
2021-06-26
Published:
2021-06-23
Contact:
XIN Fei
E-mail:3089521992@qq.com;xinfei@th.btbu.edu.cn
摘要:
简要介绍了具有高孔隙率、催化吸附等特性的金属有机骨架(MOFs)材料的分类及合成方法,分别从改性以及未改性MOFs材料在聚合物中的阻燃应用及阻燃机理来阐述了近年来MOFs材料在聚合物材料阻燃方面的研究现状。最后,对其MOFs材料的应用前景进行了总结与展望。
中图分类号:
樊晓玲, 辛菲, 蔡丽云. 金属有机骨架材料多功能阻燃聚合物应用研究进展[J]. 中国塑料, 2021, 35(6): 130-140.
FAN Xiaoling, XIN Fei, CAI Liyun. Research Progress in Applications of MOFs for Multifunctional Flame Retardant Polymers[J]. China Plastics, 2021, 35(6): 130-140.
MOFs名称 | 合成原料 | 热稳定性 (初始分解温度) | |
---|---|---|---|
金属团簇 | 有机配体 | ||
ZIF?67 | Co(NO3)2·6H2O | 2?甲基咪唑 | 100 ℃以下 |
ZIF?8 | Zn(NO3)2·6H2O | 2?甲基咪唑 | 100 ℃以下 |
MIL?53(Fe) | FeCl3·6H2O | 对苯二甲酸 | 100 ℃以下 |
UiO?66 | ZrCI4 | 对苯二甲酸 | 100 ℃以下 |
MOFs名称 | 合成原料 | 热稳定性 (初始分解温度) | |
---|---|---|---|
金属团簇 | 有机配体 | ||
ZIF?67 | Co(NO3)2·6H2O | 2?甲基咪唑 | 100 ℃以下 |
ZIF?8 | Zn(NO3)2·6H2O | 2?甲基咪唑 | 100 ℃以下 |
MIL?53(Fe) | FeCl3·6H2O | 对苯二甲酸 | 100 ℃以下 |
UiO?66 | ZrCI4 | 对苯二甲酸 | 100 ℃以下 |
1 | HERGENROTHERP M, THOMPSON C M, SMITH J G, et al. Flame Retardant Aircraft Epoxy Resins Containing Phosphorus [J]. Polymer, 2005, 46(14): 5 012⁃5 024. |
2 | SCHNEIDERMAN D K, HILLMYER M A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers [J]. Macromolecules, 2017, 50(10): 3 733⁃3 750. |
3 | HIRSCHLER M M. Poly(vinyl chloride) and Its Fire Properties [J]. Fire and Materials, 2017, 41(8): 993⁃1 006. |
4 | TAWIAH B, YU B, WEI R C, et al. Simultaneous Fire Safety Enhancement and Mechanical Reinforcement of Poly (lactic acid) Biocomposites with Hexaphenyl (nitrilotris (ethane⁃2,1⁃diyl)) tris (phosphoramidate) [J]. Journal of Hazardous Materials, 2019, 380: 10⁃21. |
5 | SUN Z, HOU Y, HU Y, et al. Effect of Additive Phosphorus⁃nitrogen Containing Flame Retardant on Char Formation and Flame Retardancy of Epoxy Resin [J]. Materials Chemistry and Physics, 2018, 214: 154⁃164. |
6 | WU C S, LIU Y L, CHIU Y C, et al. Thermal Stability of Epoxy Resins Containing Flame Retardant Components: an Evaluation with Thermogravimetric Analysis [J]. Polymer Degradation and Stability, 2002, 78(1): 41⁃48. |
7 | HUANG A S, WAN L L, CARO J. Microwave⁃assisted Synthesis of Well⁃shaped UiO⁃66⁃NH2 with High CO2 a Dsorption Capacity [J]. Materials Research Bulletin, 2018, 98: 308⁃313. |
8 | TSURUOKA T, FURUKAWA S, TAKASHIMA Y, et al. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth [J]. Angewandte Chemie⁃International Edition, 2009, 48(26): 4 739⁃4 743. |
9 | GRIFFIN S L, BRIUGLIA M L, HORST J H, et al. Assessing Crystallisation Kinetics of Zr Metal⁃Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave⁃Assisted Synthesis [J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(30): 6 910⁃6 918. |
10 | KATZ M J, BROWN Z J, COLON Y J, et al. A Facile Synthesis of UiO⁃66, UiO⁃67 and Their Derivatives [J]. Chemical Communications, 2013, 49(82): 9 449⁃9 451. |
11 | NABIPOUR H, WANG X, SONG L, et al. Metal⁃organic Frameworks for Flame Retardant Polymers Application: A critical review[J]. Composites Part A, 2020, 139:670⁃680. |
12 | SANKAR S S, EDE S R, ANANTHARAJ S,et al. Electrospun Cobalt⁃ZIF Micro⁃fibers for Efficient Water Oxidation under Unique pH Conditions [J]. Catalysis Science & Technology, 2019, 9(8): 1 847⁃1 856. |
13 | XIE Y, ZHANG C, SU J W, et al. Rapid Synthesis of Zeolitic Imidazole Frameworks in Laser⁃Induced Graphene Microreactors [J]. Chemsuschem, 2019, 12(2): 473⁃479. |
14 | FEREY G, SERRE C, MEIIET⁃Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction [J]. Angewandte Chemie⁃International Edition, 2004, 43(46): 6 296⁃6 301. |
15 | CHEN W L, JIANG Y, QIU R, et al. Investigation of UiO⁃66 as Flame Retardant and Its Application in Improving Fire Safety of Polystyrene [J]. Macromolecular Research, 2020, 28(1): 42⁃50. |
16 | DENG H X, DOONAN C J, FURUKAWA H, et al. Multiple Functional Groups of Varying Ratios in Metal⁃Organic Frameworks [J]. Science, 2010, 327(5967): 846⁃850. |
17 | LI P B, SUN Y Z, AKINAY Y. The Influence of MWCNTs on Microwave Absorption Properties of Co/C and Ba⁃Hexaferrite Hybrid Nanocomposites [J]. Synthetic Metals, 2020, 263: 147⁃154. |
18 | DANG Y T, HOANG H T, DONG H C, et al. Microwave⁃assisted Synthesis of Nano Hf⁃ and Zr⁃based Metal⁃organic Frameworks for Enhancement of Curcumin Adsorption [J]. Microporous and Mesoporous Materials, 2020, 298: 7⁃14. |
19 | CHENG P, WANG C H, KANETI Y V, et al. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications [J]. Langmuir, 2020, 36(16): 4 231⁃4 249. |
20 | XU G R, AN Z H, XU K, et al. Metal Organic Framework (MOF)⁃based Micro/nanoscaled Materials for Heavy Metal Ions Removal: The Cutting⁃edge Study on Designs, Synthesis, and Applications [J]. Coordination Chemistry Reviews, 2021, 427:25⁃57. |
21 | ZHANG J, LI Z H, QI X L, et al. Recent Progress on Metal⁃Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials[J]. Nano⁃Micro Lett., 2020, 12:173⁃194. |
22 | ZHAO S J, YIN L, ZHOU Q Q, et al. In Situ Self⁃assembly of Zeolitic Imidazolate Frameworks on the Surface of Flexible Polyurethane Foam: Towards for Highly Efficient Oil Spill Cleanup and Fire Safety [J]. Applied Surface Science, 2020, 506: 11⁃22. |
23 | NABIPOUR H, NIE S B, WANG X, et al. Zeolitic Imidazolate Framework⁃8/polyvinyl Alcohol Hybrid Aerogels with Excellent Flame Retardancy [J]. Composites Part a⁃Applied Science and Manufacturing, 2020, 129: 8⁃16. |
24 | HOU Y B, HU W Z, GUI Z, et al. Preparation of Metal⁃Organic Frameworks and Their Application as Flame Retardants for Polystyrene [J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2 036⁃2 045. |
25 | JOUYANDEH M, TIKHANI F, SHABANIAN M, et al. Synthesis, Characterization, and High Potential of 3D Metal⁃organic Framework (MOF) Nanoparticles for Curing with Epoxy [J]. Journal of Alloys and Compounds, 2020, 829: 45⁃60. |
26 | PARK J M, KWON D J, WANG Z J, et al. Interfacial, Fire Retardancy, and Thermal Stability Evaluation of Graphite Oxide (GO)⁃phenolic Composites with Different GO Particle Sizes [J]. Composites Part B⁃Engineering, 2013, 53: 290⁃296. |
27 | WANG Z, WU W, WAGNER M H, et al. Synthesis of DV⁃GO and Its Effect on the Fire Safety and Thermal Stability of Bismaleimide [J]. Polymer Degradation and Stability, 2016, 128: 209⁃216. |
28 | KAUSAR A, RAFIQUE I, MUHAMMAD B. Significance of Carbon Nanotube in Flame⁃Retardant Polymer/CNT Composite: A Review [J]. Polymer⁃Plastics Technology and Engineering, 2017, 56(5): 470⁃487. |
29 | SHABANIAN M, HAJIBEYGI M, ROOHANI M. Synthesis of a Novel CNT/polyamide Composite Containing Phosphine Oxide Groups and Its Flame Retardancy and Thermal Properties [J]. New Carbon Materials, 2015, 30(5): 397⁃403. |
30 | YAO X L, DU C G, HUA Y T, et al. Flame⁃Retardant and Smoke Suppression Properties of Nano MgAl⁃LDH Coating on Bamboo Prepared by an in Situ Reaction [J]. Journal of Nanomaterials, 2019, 12: 16⁃39. |
31 | ARULMURUGAN P, MANIKANDAN N A, PUGAZHENTHI G. Synthesis and Characterization of Polystyrene (PS)/Modified Ni⁃Al LDH Nanocomposite: Role of Composition, Modifier and Synthesis Route of Layered Double Hydroxides (LDH) [J]. Macromolecular Symposia, 2018, 382(1): 12⁃24. |
32 | WANG Y C, ZHAO J P, CHEN J L. Effect of Polydimethylsiloxane Viscosity on Silica Fume⁃based Geopolymer Hybrid Coating for Flame⁃retarding Plywood [J]. Construction and Building Materials, 2020, 239: 10⁃20. |
33 | BANERJEE P C, LOBO D E, MIDDAG R, et al. Electrochemical Capacitance of Ni⁃Doped Metal Organic Framework and Reduced Graphene Oxide Composites: More Than the Sum of Its Parts [J]. Acs Applied Materials & Interfaces, 2015, 7(6): 3 655⁃3 664. |
34 | LIN R, SHEN L J, REN Z Y, et al. Enhanced Photocatalytic Hydrogen Production Activity Via Dual Modification of MOF and Reduced Graphene Oxide on CdS [J]. Chemical Communications, 2014, 50(62): 8 533⁃8 535. |
35 | ZHANG M, GAO Y, ZHAN Y X, et al. Preparing The Degradable, Flame⁃Retardant and Low Dielectric Constant Nanocomposites for Flexible and Miniaturized Electronics with Poly(lactic acid), Nano ZIF⁃8@GO and Resorcinol Di(phenyl phosphate) [J]. Materials, 2018, 11(9): 12⁃24. |
36 | LIN J L, HU H, GAO N Y, et al. Fabrication of GO@MIL⁃101(Fe) for Enhanced Visible⁃light Photocatalysis Degradation of Organophosphorus Contaminant [J]. Journal of Water Process Engineering, 2020, 33: 9⁃18. |
37 | HOU Y B, QIU S L, HU Y, et al. Construction of Bimetallic ZIF⁃Derived Co⁃Ni LDHs on the Surfaces of GO or CNTs with a Recyclable Method: Toward Reduced Toxicity of Gaseous Thermal Decomposition Products of Unsaturated Polyester Resin [J]. Acs Applied Materials & Interfaces, 2018, 10(21): 18 359⁃18 371. |
38 | HOU Y B, HU W Z, ZHOU X, et al. Vertically Aligned Nickel 2⁃Methylimidazole Metal⁃Organic Framework Fabricated from Graphene Oxides for Enhancing Fire Safety of Polystyrene [J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8 778⁃8 786. |
39 | ZHANG M, SHI X W, DAI X, et al. Improving the Crystallization and Fire Resistance of Poly(lactic acid) with Nano⁃ZIF⁃8@GO [J]. Journal of Materials Science, 2018, 53(9): 7 083⁃7 093. |
40 | RAMOS⁃Garces M V, COLON J L. Preparation of Zirconium Phosphate Nanomaterials and Their Applications as Inorganic Supports for the Oxygen Evolution Reaction [J]. Nanomaterials (Basel, Switzerland), 2020, 10(5): 76⁃93. |
41 | PICA M, NOCCHETTI M, RIDOLFI B, et al. Nanosized Zirconium Phosphate/AgCl Composite Materials: a New Synergy for Efficient Photocatalytic Degradation of Organic Dye Pollutants [J]. Journal of Materials Chemistry A, 2015, 3(10): 5 525⁃5 534. |
42 | XU B L, XU W Z, LIU Y C, et al. Surface Modification of Zirconium Phosphate by Zeolitic Imidazolate Frameworks⁃8 and Its Effect on Improving the Fire Safety of Polyurethane Elastomer [J]. Polymers for Advanced Technologies, 2018, 29(11): 2 816⁃2 826. |
43 | LI A J, XU W Z, CHEN R, et al. Fabrication of Zeolitic Imidazolate Frameworks on Layered Double Hydroxide Nanosheets to Improve the Fire Safety of Epoxy Resin [J]. Composites Part a⁃Applied Science and Manufacturing, 2018, 112: 558⁃571. |
44 | GUO H L, WANG Y F, LI C F, et al. Construction of Sandwich⁃structured CoAl⁃layered Double Hydroxid⁃e@zeolitic Imidazolate Framework⁃67 (CoAl⁃LDH@ZIF⁃67) Hybrids: Towards Enhancing the Fire Safety of Epoxy Resins [J]. Rsc Advances, 2018, 8(63): 36 114⁃36 122. |
45 | LIU C, WU S, YANG Z, et al. Mechanically Robust and Flame⁃Retardant Silicon Aerogel Elastomers for Thermal Insulation and Efficient Solar Steam Generation [J]. Acs Omega, 2020, 5(15): 8 638⁃8 646. |
46 | XU W Z, WANG G S, LIU Y C, et al. Zeolitic Imidazolate Framework⁃8 Was Coated with Silica and Investigated as a Flame Retardant to Improve the Flame Retardancy and Smoke Suppression of Epoxy Resin [J]. Rsc Advances, 2018, 8(5): 2 575⁃2 585. |
47 | GADDAM S K, POTHU R, BODDULA R. Graphitic Carbon Nitride (g⁃C3N4) Reinforced Polymer Nanocomposite Systems⁃A review [J]. Polymer Composites, 2020, 41(2): 430⁃442. |
48 | CHEN Z W, CHEN T T, YU Y, et al. Metal⁃organic Framework MIL⁃53 (Fe)@C/graphite Carbon Nitride Hybrids with Enhanced Thermal Stability, Flame Retardancy, and Smoke Suppression for Unsaturated Polyester Resin [J]. Polymers for Advanced Technologies, 2019, 30(9): 2 458⁃2 467. |
49 | ZHU H, XU S. Preparation of Flame⁃Retardant Rigid Polyurethane Foams by Combining Modified Melam⁃ine⁃Formaldehyde Resin and Phosphorus Flame Retardants [J]. Acs Omega, 2020, 5(17): 9 658⁃9 667. |
50 | DONG H R, YUAN B H, QI C R, et al. Preparation of Piperazine Cyanurate by Hydrogen⁃bonding Self⁃assembly Reaction and Its Application in Intumescent Flame⁃retardant Polypropylene Composites [J]. Polymers for Advanced Technologies, 2020, 31(5): 1 027⁃1 037. |
51 | WANG X, WANG S, WANG W, et al. The Flammability and Mechanical Properties of Poly (lactic acid) Composites Containing Ni⁃MOF Nanosheets with Polyhydroxy Groups [J]. Composites Part B⁃Engineering, 2020, 183: 5⁃19. |
52 | WANG H, QIAO H, GUO J,et al. Preparation of Cobalt⁃based Metal Organic Framework and Its Application as Synergistic Flame Retardant in Thermoplastic Polyurethane (TPU) [J]. Composites Part B:Engineering, 2020, 182: 34⁃42. |
53 | CHEN J, WANG J, NI A, et al. Synthesis of a Novel Phosphorous⁃Nitrogen Based Charring Agent and Its Application in Flame⁃retardant HDPE/IFR Composites [J]. Polymers, 2019, 11(6): 44⁃56. |
54 | GANGIREDDY C S R, WANG X, KAN Y, et al. Synthesis of a Novel DOPO⁃based Polyphosphoramide with High Char Yield and Its Application in Flame⁃retardant Epoxy Resins [J]. Polymer International, 2019, 68(5): 936⁃945. |
55 | WANG Y, XU M J, LI B. Synthesis of N⁃methyl Triazine⁃ethylenediamine Copolymer Charring Foaming Agent and Its Enhancement on Flame Retardancy and Water Resistance for Polypropylene Composites [J]. Polymer Degradation and Stability, 2016, 131: 20⁃29. |
56 | HOU Y B, HU W Z, GUI Z, et al. A novel Co(II)⁃based Metal⁃organic Framework with Phosphorus⁃containing Structure: Build for Enhancing Fire Safety of Epoxy [J]. Composites Science and Technology, 2017, 152: 231⁃242. |
57 | HOU Y B, LIU L X, QIU S L, et al. DOPO⁃Modified Two⁃Dimensional Co⁃Based Metal⁃Organic Framework: Preparation and Application for Enhancing Fire Safety of Poly(lactic acid) [J]. Acs Applied Materials & Interfaces, 2018, 10(9): 8 274⁃8 286. |
58 | SHI X W, JU Y Q, ZHANG M, et al. The Intumescent Flame⁃retardant Biocomposites of Poly(lactic acid) Containing Surface⁃coated Ammonium Polyphosphate and Distiller's Dried Grains with Solubles (DDGS) [J]. Fire and Materials, 2018, 42(2): 190⁃197. |
59 | XIE J, SHI X W, ZHANG M, et al. Improving the Flame Retardancy of Polypropylene by Nano Metal⁃organic Frameworks and Bioethanol Coproduct [J]. Fire and Materials, 2019, 43(4) : 373⁃380. |
60 | GUO W W, NIE SH B, KALALI E N, et al. Construction of SiO2@UiO⁃66 Core Shell Microarchitectures Through Covalent Linkage as Flame Retardant and Smoke Suppressant for Epoxy Resins [J]. Composites Part B⁃Engineering, 2019, 176:11⁃22. |
61 | TRIPATHI S, SREENIVASULU B, SURESH A, et al. Assorted Functionality⁃appended UiO⁃66⁃NH2 for Highly Efficient Uranium(vi) Sorption at Acidic/neutral/basic pH [J]. Rsc Advances, 2020, 10(25): 14 650⁃14 661. |
62 | ZHANG M, DING X, ZHAN Y,et al. Improving The Flame Retardancy of Poly(lactic acid) Using an Efficient Ternary Hybrid Flame Retardant by Dual Modification of Graphene Oxide with Phenylphosphinic Acid and Nano MOFs [J]. Journal of hazardous materials, 2020, 384: 39⁃50. |
63 | XU W Z, WANG G S, XU J Y, et al. Modification of Diatomite with Melamine Coated Zeolitic Imidazolate Framework⁃8 as an Effective Flame Retardant to Enhance Flame Retardancy and Smoke Suppression of Rigid Polyurethane Foam [J]. Journal of hazardous materials, 2019, 379: 10⁃21. |
64 | CHU D W, LI F B, SONG X M, et al. A Novel Dual⁃tasking Hollow Cube NiFe2O4⁃NiCo⁃LDH@rGO Hierarchical Material for High Preformance Supercapacitor and Glucose Sensor [J]. Journal of Colloid and Interface Science, 2020, 568: 130⁃138. |
65 | SALEKI F, MOHAMMADI A, MOOSAVIFARD S E, et al. MOF Assistance Synthesis of Nanoporous Double⁃shelled CuCo2O4 Hollow Spheres for Hybrid Superca⁃pacitors [J]. Journal of Colloid and Interface Science, 2019, 556: 83⁃91. |
66 | QIAO H, YANG Y, DAI X, et al. Amorphous (Fe) Ni⁃MOF⁃derived Hollow (bi) Metal/oxide@N⁃graphene Polyhedron as Effectively Bifunctional Catalysts in Overall Alkaline Water Splitting [J]. Electrochimica Acta, 2019, 318: 430⁃439. |
67 | ZHANG Z, LI X, YUAN Y, et al. Confined Dispersion of Zinc Hydroxystannate Nanoparticles into Layered Bimetallic Hydroxide Nanocapsules and Its Application in Flame⁃Retardant Epoxy Nanocomposites [J]. Acs Applied Materials & Interfaces, 2019, 11(43): 40 951⁃40 960. |
68 | ZHOU X, MU X W, CAI W, et al. Design of Hierarchical NiCo⁃LDH@PZS Hollow Dodecahedron Architecture and Application in High⁃Performance Epoxy Resin with Excellent Fire Safety [J]. Acs Applied Materials & Interfaces, 2019, 11(44): 41 736⁃41 749. |
69 | KATZ M J, BROWM Z J, COLON Y J, et al. A Facile Synthesis of UiO⁃66, UiO⁃67 and Their Derivatives [J]. Chemical Communications, 2013, 49(82): 9 449⁃9 451. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[3] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[4] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[5] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[6] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[7] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[8] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[9] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[10] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
[11] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[12] | 张九夫, 罗开强, 徐军, 郭宝华. 长玻璃纤维增强PA66复合材料的综合性能及其影响因素研究[J]. 中国塑料, 2022, 36(3): 1-8. |
[13] | 王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156. |
[14] | 李泽洋, 岑兰, 陈胜, 陈伟杰, 杜兵华, 张二帅. 羧基丁腈橡胶/PA12热塑性弹性体的制备及性能研究[J]. 中国塑料, 2022, 36(3): 15-20. |
[15] | 刘浪, 栾道成, 胡志华, 文科林, 周新宇, 米书恒, 王正云. 玄武岩纤维和钢纤维含量对树脂基摩擦材料性能的影响研究[J]. 中国塑料, 2022, 36(3): 33-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||