
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (9): 75-82.DOI: 10.19491/j.issn.1001-9278.2023.09.011
收稿日期:
2023-04-21
出版日期:
2023-09-26
发布日期:
2023-09-18
通讯作者:
张辉(1964-),男,教授,从事分子材料设计合成等,357585200@qq.com
CUI Chengzhi1,2, CAO Jinxing1, LIU Jianlan2, ZHANG Hui1()
Received:
2023-04-21
Online:
2023-09-26
Published:
2023-09-18
Contact:
ZHANG Hui
E-mail:357585200@qq.com
摘要:
对聚乳酸/热塑性聚氨酯共混材料的界面、功能化、形状记忆性能改性研究进行了综述,并对该共混材料的研究发展方向进行了展望。
中图分类号:
崔成志, 曹金星, 刘建兰, 张辉. 聚乳酸/热塑性聚氨酯共混材料研究进展[J]. 中国塑料, 2023, 37(9): 75-82.
CUI Chengzhi, CAO Jinxing, LIU Jianlan, ZHANG Hui. Research progress in poly(lactic acid)/thermoplastic polyurethane blends[J]. China Plastics, 2023, 37(9): 75-82.
1 | Mohamed Ali E Kshad,Hani E Naguib. Development and modeling of multi⁃phase polymeric origami inspired architecture by using pre⁃molded geometrical features[J]. Smart Materials and Structures,2017,26(2):10.1088/1361⁃665x/26/2/025012. |
2 | Denizhan Yavas, Liu Qingyang, Zhang Ziyang, Wu Dazhong,et al. Design and fabrication of architected multi⁃material lattices with tunable stiffness, strength, and energy absorption[J]. Materials & Design,2022,217:10.1016/j.matdes.2022.110613. |
3 | Aishwarya Gosavi, Atul Kulkarni, Yogiraj Dama, Abhijeet Deshpande, Bhagwan Jogi,et al. Comparative analysis of drop impact resistance for different polymer based materials used for hearing aid casing[J]. Materials Today: Proceedings,2022,49(P5):2 433⁃2 441. |
4 | Hu Qingxi, Zhang Rennan, Zhang Haiguang,et al. Topological structure design and fabrication of biocompatible PLA/TPU/ADM mesh with appropriate elasticity for hernia repair[J]. Macromolecular Bioscience,2021,21(6):e2000423. |
5 | Cuellar Juan Sebastian, Dick Plettenburg, Zadpoor Amir A,et al. Design of a 3D⁃printed hand prosthesis featuring articulated bio⁃inspired fingers.[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine,2020,235(3):336⁃345. |
6 | Mi Hao⁃Yang, Salick Max R, Xin Jing,et al. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding[J]. Materials Science & Engineering C,2013,33(8):4 767⁃4 776. |
7 | Xin Jing, Hao Yang Mi, Xiang Fang Peng,et al. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends[J]. Polymer Engineering & Science,2015,55(1):70⁃80. |
8 | Lou Ching⁃Wen, Lu Chao⁃Tsang, Lin Chin⁃Mei,et al.Process technology and performance evaluation of functional knee pad[J]. Fibers and Polymers,2010,11(1):136⁃141. |
9 | Khalili N, Asif H, Naguib H E. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties[J]. Smart Materials and Structures,2018,27(5):10.1088/1361⁃665X/aab417. |
10 | Rosli Noor Afizah, Mehlika Karamanlioglu, Hanieh Kargarzadeh,et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review.[J]. International Journal of Biological Macromolecules,2021,187:732⁃741. |
11 | Khalifa Mohammed, Anandhan S, Wuzella Günter,et al. Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers – a review[J]. Polymer⁃Plastics Technology and Materials,2020,59(16):1⁃19. |
12 | Rizvi Reza, Naguib Hani. Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites[J]. Journal of Materials Research,2013,28(17):2 415⁃2 425. |
13 | Strankowski Michał, Korzeniewski Piotr, Strankowska Justyna,et al. Morphology,mechanical and thermal properties of thermoplastic polyurethane containing reduced graphene oxide and graphene nanoplatelets[J]. Materials,2018,11(1):82⁃82. |
14 | Aruna Kumar Barick,Deba Kumar Tripathy. Effect of nanofiber on material properties of vapor⁃grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding[J]. Composites Part A,2010,41(10):1 471⁃1 482. |
15 | Bi Hongjie, Ren Zechun, Rui Guo,et al. Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding[J]. Industrial Crops & Products,2018,122:76⁃84. |
16 | Abu Bakar Sulong,Tayser Sumer Gaaz, Sahari Jaafar. Mechanical and physical properties of injection molded halloysite nanotubes⁃thermoplastic polyurethane nanocomposites[J]. Procedia ⁃ Social and Behavioral Sciences,2015,195(C):2 748⁃2 752. |
17 | Mi Hao⁃Yang, Salick Max R, Jing Xin,et al. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration.[J]. Journal of Biomedical Materials Research, Part A,2015,103(2):593⁃603. |
18 | Dasdemir Mehmet, Topalbekiroglu Mehmet, Demir Ali. Electrospinning of thermoplastic polyurethane microfibers and nanofibers from polymer solution and melt[J]. Journal of Applied Polymer Science,2013,127(3):1 901⁃1 908. |
19 | Oliaei Erfan, Kaffashi Babak, Davoodi Saeed. Investigation of structure and mechanical properties of toughened poly( l⁃lactide)/thermoplastic poly(ester urethane) blends[J]. Journal of Applied Polymer Science,2016,133(15):10.1002/app.43104. |
20 | Liu Zheng⁃Wei, Chou Hung⁃Chia, Chen Szu⁃Hsien,et al.Mechanical and thermal properties of thermoplastic polyurethane⁃toughened polylactide⁃based nanocomposites[J]. Polymer Composites,2014,35(9):1 744⁃1 757. |
21 | Fei Feng, Lin Ye. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends[J]. Journal of Applied Polymer Science,2011,119(5):2 778⁃2 783. |
22 | Fatemeh Azadi,Khonakdar Hossein Ali,Jafari Seyed Hassan,et al. The effect of tailoring morphology on rheology and dielectric properties of poly (lactic acid) /thermoplastic polyurethane/graphene oxide nanocomposites[J]. Materials Today Communications,2022,33:10.1016/j.mtcomm.2022.104497. |
23 | Sun Haibin, Jing Hu, Xue Bai,et al. Largely improved toughness of poly(lactic acid) by unique electrospun fiber network structure of thermoplastic polyurethane[J]. Polymer Testing,2017,64:250⁃253. |
24 | Sebnem Kemaloglu Dogan,Efren Andablo Reyes, Rastogi Sanjay,et al. Reactive compatibilization of PLA/TPU blends with a diisocyanate[J]. Journal of Applied Polymer Science,2014,131(10):10.1002/app.40251. |
25 | Dogan S K, Boyacioglu S, Kodal M,et al. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: “Effects of compatibilization”[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,71:349⁃361. |
26 | Mo Xian⁃Zhong, Wei Fu⁃Xiang, Tan Deng⁃Feng,et al. The compatibilization of PLA⁃g⁃TPU graft copolymer on polylactide/thermoplastic polyurethane blends[J]. Journal of Polymer Research,2020,27(17):19⁃640. |
27 | Yusuf Kahraman, Burcu Özdemir, Volkan Kılıç,et al. Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy‐based chain extender[J]. Journal of Applied Polymer Science,2021,138(20):10.1002/APP.50457. |
28 | Zhang Hai⁃Chen, Kang Ben⁃hao, Chen Le⁃Shan,et al. Enhancing toughness of poly (lactic acid)/Thermoplastic polyurethane blends via increasing interface compatibility by polyurethane elastomer prepolymer and its toughening mechanism[J]. Polymer Testing,2020,87(C):10.1016/j.polymertesting.2020.106521. |
29 | Zahra Shakouri, Hossein Nazockdast. Microstructural development and mechanical performance of PLA/TPU blends containing geometrically different cellulose nanocrystals[J]. Cellulose,2018,25(12):7 167⁃7 188. |
30 | Fang Hui, Zhang Lingjie, Chen Anlin,et al. Improvement of mechanical property for PLA/TPU blend by adding PLA⁃TPU copolymers prepared via in situ ring⁃opening polymerization[J]. Polymers,2022,14(8):1 530. |
31 | Qian Kaiyao, Xin Qian, Chen Yulong,et al. Poly(lactic acid)–thermoplastic poly(ether)urethane composites synergistically reinforced and toughened with short carbon fibers for three‐dimensional printing[J]. Journal of Applied Polymer Science,2018,135(29):10.1002/app.46483. |
32 | Pandey Kalpana, Antil Rohit, Saha Sampa,et al. Poly(lactic acid)/thermoplastic polyurethane/wood flour composites: evaluation of morphology, thermal, mechanical and biodegradation properties[J]. Materials Research Express,2019,6(12):125306. |
33 | Bahareh Ghassemi, Sara Estaji,Mousavi Seyed Rasoul,et al. In⁃depth study of mechanical properties of poly(lactic acid)/thermoplastic polyurethane/hydroxyapatite blend nanocomposites[J]. Journal of Materials Science,2022,57(14):7 250⁃7 264. |
34 | Zhang Zixi, Xiang Dong, Wu Yuanpeng,et al. Effect of carbon black on the strain sensing property of 3D printed conductive polymer composites[J]. Applied Composite Materials,2022(prepublish):1⁃14. |
35 | Yuan Wei, Rui Huang, Peng Dong,et al. Preparation of polylactide/poly(ether)urethane blends with excellent electro⁃actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers[J]. Chinese Journal of Polymer Science,2018,36(10):1 175⁃1 186. |
36 | Krishnendu Nath, Sabyasachi Ghosh,Ghosh Suman Kumar,et al. Facile preparation of light‐weight biodegradable and electrically conductive polymer based nanocomposites for superior electromagnetic interference shielding effectiveness[J]. Journal of Applied Polymer Science,2021,138(22):10.1002/APP.50514. |
37 | Xu Daifang, Yu Kejing, Qian Kun,et al. Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2 [J]. Journal of Thermoplastic Composite Materials,2018,31(1):61⁃78. |
38 | Qu Zhongjie, Yin Dexian, Zhou Hongfu,et al. Cellular morphology evolution in nanocellular poly (lactic acid)/thermoplastic polyurethane blending foams in the presence of supercritical N2 [J]. European Polymer Journal,2019,116:291⁃301. |
39 | Shen Wanting, Wu Wei, Liu Chao,et al. Thermal conductivity enhancement of PLA/TPU/BN composites by controlling BN distribution and annealing treatment[J]. Plastics, Rubber and Composites,2020,49(5):204⁃213. |
40 | He Shaoyun, Hu Shikai, Wu Yaowen,et al. Polyurethanes based on polylactic acid for 3D printing and shape⁃memory applications[J]. Biomacromolecules,2022:10.1021/ACS.BIOMAC.2C00662. |
41 | Boyacioglu S, Kodal M, Ozkoc G. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio⁃blends[J]. European Polymer Journal,2020,122(C):109372. |
42 | Sorimpuk Neilson Peter, Wai Heng Choong, BihLii Chua. Thermoforming characteristics of PLA/TPU multi⁃material specimens fabricated with fused deposition modelling under different temperatures[J]. Polymers,2022,14(20):4304. |
43 | Cai Shenyang, Sun Yu⁃Chen, Ren Jie,et al. Toward the low actuation temperature of flexible shape memory polymer composites with room temperature deformability via induced plasticizing effect.[J]. Journal of Materials Chemistry, B,2017,5(44):8 845⁃8 853. |
44 | Fatemeh Azadi,Jafari Seyed Hassan,Khonakdar Hossein Ali,et al. Influence of graphene oxide on thermally induced shape memory behavior of PLA/TPU blends: correlation with morphology, creep behavior, crystallinity, and dynamic mechanical properties[J]. Macromolecular Materials and Engineering,2020,306(2):10.1002/MAME.202000576. |
45 | Lai Sun⁃Mou, Wu Wan⁃Ling, Wang Yu⁃Jhen. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio⁃based blends[J]. Journal of Polymer Research,2016,23(5):10.1007/s10965⁃016⁃0993⁃6. |
46 | Liu Han, Wang Feifan, Wu Wenyang,et al. 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto⁃responsive shape memory polymers for smart structures[J]. Composites Part B,2023,248:10.1016/J.COMPOSITESB.2022.110382. |
47 | Dong Ke,Panahi Sarmad Mahyar, Cui Ziying,et al. Electro⁃induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis[J]. Composites Part B: Engineering,2021(prepublish):10.1016/J.COMPOSITESB.2021.108994. |
[1] | 王磊, 赵敏, 翁云宣, 张彩丽. 机器学习在聚乳酸加工及性能预测中的应用研究进展[J]. 中国塑料, 2023, 37(8): 127-134. |
[2] | 赵萌萌, 杨红娟, 沈思宇, 冯硕, 张伟蒙, 胡晶. 聚乙二醇二缩水甘油醚对PLA/PBAT共混材料相容性及性能的影响[J]. 中国塑料, 2023, 37(8): 20-27. |
[3] | 杜乐, 胡娅洁, 胡健, 孙滔, 云雪艳, 董同力嘎. UV固化制备聚(L⁃乳酸)/壳聚糖薄膜及其热学、力学及抑菌性能研究[J]. 中国塑料, 2023, 37(8): 38-44. |
[4] | 陈宇, 张春辉, 崔正, 孙同兵. 复合塑料软包装材料健康发展的机遇和挑战[J]. 中国塑料, 2023, 37(2): 56-61. |
[5] | 汪杰, 张伟蒙, 胡晶. 聚乳酸⁃羟基乙酸共聚物涂层对聚乳酸3D打印支架的性能影响[J]. 中国塑料, 2023, 37(1): 1-7. |
[6] | 周新星, 郑玉婴, 陈乘鑫, 孔繁盛. 热塑性聚氨酯/石墨烯改性聚氨酯注浆材料的制备与性能研究[J]. 中国塑料, 2023, 37(1): 54-59. |
[7] | 孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104. |
[8] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[9] | 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8): 56-61. |
[10] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[11] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[12] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[13] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[14] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[15] | 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 熔融沉积工艺参数对热塑性聚氨酯弹性体静动态力学性能的影响[J]. 中国塑料, 2022, 36(5): 29-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||