
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (8): 28-37.DOI: 10.19491/j.issn.1001-9278.2023.08.005
收稿日期:
2023-03-28
出版日期:
2023-08-26
发布日期:
2023-08-21
通讯作者:
杜国勇 (1963—),男,教授,从事油气田环境保护综合研究,guoyongdu@126.com作者简介:
周龙(1994—),男,硕士研究生,从事油水分离研究,1390928529@qq.com
基金资助:
ZHOU Long(), DU Guoyong(
), DENG Chunping
Received:
2023-03-28
Online:
2023-08-26
Published:
2023-08-21
Contact:
DU Guoyong
E-mail:1390928529@qq.com;guoyongdu@126.com
摘要:
采用了一种简单、高效和环保的方法用于油水分离,即通过改进的Hummers法制备了氧化石墨烯(GO),以GO和壳聚糖(CS)为改性原料,以聚氨酯海绵(PU)为基体,通过两步浸渍法制备了超亲水⁃水下超疏油海绵(PU⁃GO@CS)。GO的加入能够增加海绵表面的粗糙度和亲水性,CS的加入能增加海绵的亲水性和GO涂层的稳定性。改性PU具有良好的弹性性能、较好的热稳定性和吸水能力。油水分离性能测试表明,仅在依靠重力的作用下即可分离多种油水混合物,对各种油水混合物的分离效率可达95 %以上;改性PU良好的可重复使用性使其在10次使用后的分离效率并未明显降低;在泵提供动外力时可实现无搅拌状态下的静态连续油水分离和搅拌状态下的动态连续油水分离;在磨损循环10次以后,改性PU仍能保持较高的油水分离性能。
中图分类号:
周龙, 杜国勇, 邓春萍. 超亲水⁃水下超疏油聚氨酯海绵的制备及其油水分离性能研究[J]. 中国塑料, 2023, 37(8): 28-37.
ZHOU Long, DU Guoyong, DENG Chunping. Preparation and oil⁃water separation performance of superhydrophilic⁃underwater superoleophobic polyurethane sponge[J]. China Plastics, 2023, 37(8): 28-37.
样品 | T5 %/℃ | Tmax/℃ | 质量保留率/% |
---|---|---|---|
PU | 257 | 376 | 62.2 %(320 ℃)、13.7%(600 ℃) |
PU⁃GO | 209 | 375 | 92.9 %(230 ℃)、68.4 %(320 ℃)、18.8 %(600 ℃) |
PU⁃GO@CS | 105 | 368 | 93.9 %(140 ℃)、87.0 %(220 ℃)、66.8 %(310 ℃)、26.7 %(600 ℃) |
样品 | T5 %/℃ | Tmax/℃ | 质量保留率/% |
---|---|---|---|
PU | 257 | 376 | 62.2 %(320 ℃)、13.7%(600 ℃) |
PU⁃GO | 209 | 375 | 92.9 %(230 ℃)、68.4 %(320 ℃)、18.8 %(600 ℃) |
PU⁃GO@CS | 105 | 368 | 93.9 %(140 ℃)、87.0 %(220 ℃)、66.8 %(310 ℃)、26.7 %(600 ℃) |
1 | Gao Jiefeng, Bei Li, Ling Wang, et al. Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 68:416⁃424. |
2 | Abdul Aziz Al⁃Majed, Abdulrauf Rasheed Adebayo, Enamul Hossain M. A sustainable approach to controlling oil spills[J]. Journal of Environmental Management, 2012, 113:213⁃227. |
3 | Xie Atian, Cui Jiuyun, Chen Yangyang, et al. Dual⁃channel separation system based on platanus fruit⁃like Ni@Ni(OH)2 hierarchical architecture for fast, efficient and continuous light/heavy oil–water separation[J].Journal of Industrial and Engineering Chemistry, 2019: 208⁃215. |
4 | Mc Nutt Marcia K, Rich Camilli, Crone Timothy J, et al. Review of flow rate estimates of the deepwater horizon oil spill[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50):20 260⁃20 267. |
5 | Joye Samantha B. Deepwater horizon, 5 years on: Baseline environmental data are crucial for understanding the impacts of oil spills[J]. Science, 2015, 349(6 248):592⁃593. |
6 | Victoria Broje, Keller Arturo A. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface[J]. Environmental Science & Technology, 2006, 40(24):7 914⁃7 918. |
7 | Sneddon Joseph, Hardaway Carey, Bobbadi Kishore K, et al. A study of a crude oil spill site for selected metal concentrations remediated by a controlled burning in Southwest Louisiana[J]. Microchemical Journal, 2005, 82(1):8⁃16. |
8 | Han Hu, Zhao Zongbin, Gogotsi Yury, et al. Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption[J]. Environmental Science & Technology Letters, 2014,3: 214⁃220. |
9 | Cheng Wang, He Guanghua, Cao Jilong, et al. Underwater superoleophobic and salt⁃tolerant sodium alginate/N⁃succinyl chitosan composite aerogel for highly efficient oil–water separation[J]. ACS Applied Polymer Materials, 2020, 2(3):1 124⁃1 133. |
10 | Rahmani Zahra, Ali Morad Rashidi, Kazemi Abbass, et al. N⁃doped reduced graphene oxide aerogel for the selective adsorption of oil pollutants from water: Isotherm and kinetic study[J]. Journal of Industrial and Engineering Chemistry, 2018, 61:416⁃426. |
11 | Zhu Haiguang, Chen Dongyun, An Wei,et al. A robust and cost⁃effective superhydrophobic graphene foam for efficient oil and organic solvent recovery[J]. Small, 2015, 11(39):5 222⁃5 229. |
12 | Kong Liying, Yang Li, Qiu Fengxian, et al. Fabrication of hydrophobic and oleophilic polyurethane foam sponge modified with hydrophobic Al2O3 for oil/water separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 58: 369⁃375. |
13 | Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction[J]. Journal of Membrane Science, 1998, 151(1):13⁃28. |
14 | Gao Xuefei, Xu Li⁃Ping, Xue Zhongxin, et al. Dual⁃scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation[J]. Advanced Materials, 2014, 26(11):1 771⁃1 775. |
15 | Zhang Mengjie, Ma Wenjing, Wu Shutian, et al. Electrospun frogspawn structured membrane for gravity⁃driven oil⁃water separation[J]. Journal of Colloid and Interface Science, 2019, 547:136⁃144. |
16 | Yue Xuejie, Tao Zhang, Yang Dongya, et al. In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oil–water separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 61:188⁃196. |
17 | Xu Xu, Li Minxuan, Li Xiang, et al. Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil⁃water separation and pollutants removal[J]. Journal of Industrial and Engineering Chemistry, 2020, 92(0):278⁃286. |
18 | Sung⁃Jin Choi, Tae⁃Hong Kwon, Hwon Im, et al. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water[J]. ACS Applied Materials & Interfaces, 2011, 3(12):4 552⁃4 556. |
19 | Li Minxuan, Xu Xu, Lei Zhang. Fabricated superhydrophobic three⁃dimensional rambutan⁃like⁃β⁃NiOOH@ sponge skeletons for multitasking oil⁃water separation[J]. Journal of Industrial and Engineering Chemistry, 2020, 84(0): 340⁃348. |
20 | Zhao Jiajun, Chen Hongyun, Ye Huijian, et al. Poly(dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation[J]. Soft Matter, 2019,15(45):9 224⁃9 232. |
21 | Xue Zhongxin, Liu Mingjie, Jiang Lei. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B: Polymer Physics, 2012,50(17):1 209⁃1 224. |
22 | Fowkes Frederick M. Attractive forces at interfaces[J]. Industrial and Engineering Chemistry, 1964, 56(12):40⁃52. |
23 | Kota Arun K, Gibum Kwon, Wonjae Choi, et al. Hygro⁃responsive membranes for effective oil⁃water separation[J]. Nature Communications, 2012, 3(8):1025. |
24 | Li Tingting, Shen Jie, Zhang Zheng,et al. A poly(2⁃(dimethylamino)ethyl methacrylate⁃co⁃methacrylic acid) complex induced route to fabricate a super⁃hydrophilic hydrogel and its controllable oil/water separation[J]. RSC Advances, 2016, 6(47): 40 656⁃40 663. |
25 | Feng Zhang, Gao Shoujian, Zhu Yuzhang, et al. Alkaline⁃induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil⁃adhesion for high⁃efficient oil/water separation[J]. Journal of Membrane Science, 2016, 513:67⁃73. |
26 | Lin Ling, Liu Mingjie, Chen Li, et al. Bio⁃inspired hierarchical macromolecule⁃nanoclay hydrogels for robust underwater superoleophobicity[J]. Advanced Materials, 2010, 43: 4826. |
27 | 周龙, 杜国勇, 邓春萍. 氧化石墨烯纳米流体的制备及热性能研究[J]. 化工新型材料, 2022,50(10):160⁃166. |
ZHOU L, DU G Y, DENG C P. Preparation and thermal properties of graphite oxide nanofluids[J]. New Chemical Materials, 2022,50(10): 160⁃166. | |
28 | 张昆明,陆丽金,黄永春,等.撞击流⁃射流空化制备纳米级壳聚糖载药微球[J].高分子材料科学与工程,2022,38(4):37⁃49. |
ZHANG K M, LU L J, HUANG Y C, et al. Preparation of nanoscale chitosan drug⁃loaded microspheres by impinging stream⁃jet cavitation[J]. Polymer Materials Science and Engineering, 2022, 38(4): 37⁃49. | |
29 | 林冬梅.棉织物和聚氨酯海绵表面超疏水阻燃涂层的构造与性能研究[D].广州:华南理工大学,2019. |
30 | 潘海峰.棉织物和软质聚氨酯泡沫的层层自组装阻燃涂层的设计及其性能研究[D].合肥:中国科学技术大学,2015. |
[1] | 翁城武, 郑玉婴. 耐低温慢回弹聚氨酯海绵材料制备及性能研究[J]. 中国塑料, 2023, 37(2): 51-55. |
[2] | 陈淑花, 任子萌, 孙婷婷. 壳聚糖/壳聚糖接枝氧化石墨烯复合气凝胶的制备及性能研究[J]. 中国塑料, 2022, 36(9): 32-37. |
[3] | 孟鑫, 王小龙, 公维光, 金谊. “三源一体”壳核型阻燃剂的制备及其在聚乳酸中的应用[J]. 中国塑料, 2022, 36(9): 96-104. |
[4] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[5] | 杨笑春, 于静, 张青. 壳聚糖对PVC热稳定性能影响研究[J]. 中国塑料, 2022, 36(7): 68-73. |
[6] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[7] | 李福杰, 齐斌, 徐华亭, 王立梅. 交联壳聚糖/聚乙烯醇/蜗牛黏液复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(5): 53-61. |
[8] | 隋振全, 毛金超, 范金石. 壳聚糖/聚乙烯醇液态地膜的制备与应用[J]. 中国塑料, 2022, 36(3): 21-25. |
[9] | 谢玉, 王立梅, 齐斌. 交联壳聚糖/蒙脱土复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(3): 58-63. |
[10] | 丁丁, 徐文总, 闫弘毅. 壳聚糖/ZIF⁃67杂化物的制备及其对环氧树脂阻燃抑烟性能的影响[J]. 中国塑料, 2022, 36(12): 31-37. |
[11] | 杨旭, 方健, 覃敏, 于雷. 壳聚糖/结冷胶双层膜制备工艺优化及表征[J]. 中国塑料, 2022, 36(11): 14-23. |
[12] | 马超群, 师文钊, 崔杉杉, 张曼妍, 周红娟. 聚乙烯醇基多孔复合材料研究进展[J]. 中国塑料, 2021, 35(4): 116-123. |
[13] | 程龙, 郝艳玲, 宋小双. 壳聚糖对玉米淀粉可食膜性能的影响[J]. 中国塑料, 2021, 35(4): 35-41. |
[14] | 康炜, 刘喜军, 曹卫艳, 王宇威, 闫杰. PMMA/DEAM⁃RGO纳米复合材料的制备与性能测试[J]. 中国塑料, 2021, 35(1): 47-53. |
[15] | 刘佳衡, 王冬琴, 胡盛, 胡卫兵. GO/AT复合材料的制备及其吸附性能分析[J]. 中国塑料, 2020, 34(5): 45-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||