
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 105-117.DOI: 10.19491/j.issn.1001-9278.2024.02.016
• 综述 • 上一篇
收稿日期:
2023-07-05
出版日期:
2024-02-26
发布日期:
2024-02-03
通讯作者:
陈雅君(1985—),女,教授,从事环境友好阻燃高分子材料研究,Chenyajun@th.btbu.edu.cn基金资助:
KONG Zimeng, ZHANG Jian, DENG Yaxin, XU Xueling, CHEN Yajun()
Received:
2023-07-05
Online:
2024-02-26
Published:
2024-02-03
Contact:
CHEN Yajun
E-mail:Chenyajun@th.btbu.edu.cn
摘要:
综述了近年来聚丁二酸丁二醇酯(PBS)复合材料阻燃改性技术的研究进展,并分析了其阻燃机理。常用于PBS复合材料的阻燃剂以磷氮系阻燃剂、纳米阻燃剂、生物基阻燃剂及其复配体系为主。其中磷氮系阻燃剂的开发和改性方案最多,尤其是基于聚磷酸铵(APP)的阻燃体系是目前研究最多也是最有效的体系,包括APP和纳米阻燃剂的复配体系以及APP和生物基阻燃剂的复配体系。本文同时对各种阻燃体系的阻燃性能及典型阻燃机理进行了总结。
中图分类号:
孔子萌, 张简, 邓雅馨, 徐雪玲, 陈雅君. 阻燃聚丁二酸丁二醇酯的研究进展[J]. 中国塑料, 2024, 38(2): 105-117.
KONG Zimeng, ZHANG Jian, DENG Yaxin, XU Xueling, CHEN Yajun. Research progress in flame⁃retardant poly(butanediol succinate)[J]. China Plastics, 2024, 38(2): 105-117.
样品 | 添加量/% | 点火时间/s | 热释放速率峰值下降率/% | 总热释放量下降率/% | LOI/% | UL 94级别 | 参考文献 |
---|---|---|---|---|---|---|---|
TEOS处理的APP | 15 | — | — | — | 28.0 | V⁃0 | [ |
APP/MA/MHSH | 25 | 85 | 50 | 11 | 39.8 | V⁃0 | [ |
APP/MA/K⁃HAPAC | 25 | 31 | 48 | 88 | 36.6 | V⁃0 | [ |
APP/MA/K⁃U | 25 | 25 | 49 | 27 | 40.3 | V⁃0 | [ |
BN@APP | 1 | 59 | 28 | 23 | — | — | [ |
CAPP1 | 20 | 41 | 48 | 21 | 29.5 | V⁃0 | [ |
CNT@APP/PER | 20 | 66 | 73 | 79 | — | V⁃0 | [ |
APP/MA/PER/ HNTs | 30 | 40 | 81 | 41 | 58.2 | V⁃0 | [ |
APP/PIC | 30 | — | 24 | 48 | — | — | [ |
APP/SP | 20 | — | 42 | 16 | 30.2 | V⁃1 | [ |
APP/SP/ HNTs | 20 | — | 36 | — | 34.8 | V⁃0 | [ |
APP/WHF/PBS⁃g⁃GMA | 55 | — | — | — | 29.1 | V⁃0 | [ |
APP/MA/Cas | 30 | — | — | — | 37.3 | V⁃0 | [ |
APP/MA/LC | 25 | — | 59 | 1 | 36.2 | V⁃0 | [ |
APP/MA/EL | 25 | — | 55 | — | 31.3 | V⁃0 | [ |
APP/MA/LM | 25 | 70 | 57 | 29 | 36.5 | V⁃0 | [ |
PAPP/ZnB | 20 | 104 | 72 | 28 | — | V⁃0 | [ |
EDAP/ZnB | 10 | 110 | 57 | 11 | — | — | [ |
EDAP/MPAlP/ZnB | 10 | 110 | 63 | 13 | — | — | [ |
AlPi | 25 | 41 | 49 | 23 | 29.5 | V⁃0 | [ |
APTMP | 30 | — | 37 | — | 29.7 | V⁃0 | [ |
PA⁃GU | 30 | 10 | 74 | 64 | 26.0 | V⁃2 | [ |
CP⁃木质素 | 30 | 31 | 27 | 31 | — | — | [ |
ER | 30 | 45 | 43 | 27 | — | — | [ |
CB | 10 | 85 | 62 | 31 | 28.2 | — | [ |
EG/Clay | 9 | 50 | 41 | — | — | — | [ |
CNC@P⁃GO | 5 | 47 | 71 | 66 | — | — | [ |
Mg(OH)2/EG | 25 | 55 | 73 | 41 | 29.4 | — | [ |
PPBS1 | 20 | — | — | — | 39.2 | — | [ |
PPBS2 | 20 | — | — | — | 39.6 | — | [ |
样品 | 添加量/% | 点火时间/s | 热释放速率峰值下降率/% | 总热释放量下降率/% | LOI/% | UL 94级别 | 参考文献 |
---|---|---|---|---|---|---|---|
TEOS处理的APP | 15 | — | — | — | 28.0 | V⁃0 | [ |
APP/MA/MHSH | 25 | 85 | 50 | 11 | 39.8 | V⁃0 | [ |
APP/MA/K⁃HAPAC | 25 | 31 | 48 | 88 | 36.6 | V⁃0 | [ |
APP/MA/K⁃U | 25 | 25 | 49 | 27 | 40.3 | V⁃0 | [ |
BN@APP | 1 | 59 | 28 | 23 | — | — | [ |
CAPP1 | 20 | 41 | 48 | 21 | 29.5 | V⁃0 | [ |
CNT@APP/PER | 20 | 66 | 73 | 79 | — | V⁃0 | [ |
APP/MA/PER/ HNTs | 30 | 40 | 81 | 41 | 58.2 | V⁃0 | [ |
APP/PIC | 30 | — | 24 | 48 | — | — | [ |
APP/SP | 20 | — | 42 | 16 | 30.2 | V⁃1 | [ |
APP/SP/ HNTs | 20 | — | 36 | — | 34.8 | V⁃0 | [ |
APP/WHF/PBS⁃g⁃GMA | 55 | — | — | — | 29.1 | V⁃0 | [ |
APP/MA/Cas | 30 | — | — | — | 37.3 | V⁃0 | [ |
APP/MA/LC | 25 | — | 59 | 1 | 36.2 | V⁃0 | [ |
APP/MA/EL | 25 | — | 55 | — | 31.3 | V⁃0 | [ |
APP/MA/LM | 25 | 70 | 57 | 29 | 36.5 | V⁃0 | [ |
PAPP/ZnB | 20 | 104 | 72 | 28 | — | V⁃0 | [ |
EDAP/ZnB | 10 | 110 | 57 | 11 | — | — | [ |
EDAP/MPAlP/ZnB | 10 | 110 | 63 | 13 | — | — | [ |
AlPi | 25 | 41 | 49 | 23 | 29.5 | V⁃0 | [ |
APTMP | 30 | — | 37 | — | 29.7 | V⁃0 | [ |
PA⁃GU | 30 | 10 | 74 | 64 | 26.0 | V⁃2 | [ |
CP⁃木质素 | 30 | 31 | 27 | 31 | — | — | [ |
ER | 30 | 45 | 43 | 27 | — | — | [ |
CB | 10 | 85 | 62 | 31 | 28.2 | — | [ |
EG/Clay | 9 | 50 | 41 | — | — | — | [ |
CNC@P⁃GO | 5 | 47 | 71 | 66 | — | — | [ |
Mg(OH)2/EG | 25 | 55 | 73 | 41 | 29.4 | — | [ |
PPBS1 | 20 | — | — | — | 39.2 | — | [ |
PPBS2 | 20 | — | — | — | 39.6 | — | [ |
1 | Narzrin A, Sapuan S, Zuhri M. Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives[J]. Polymers, 2020, 12(10): 2 216⁃2 225. |
2 | Hobbs C E. Synthesis of isosorbide based flame retardants: application for polybutylene succinate[J]. Polymers, 2019, 11(2): 224⁃136. |
3 | Xu X T, Jiang Z L, Zhu K Y. The effect of expanded graphite/clay nanoparticles on thermal, rheological, and fire⁃retardant properties of poly(butylene succinate)[J]. Polymer, 2021, 139(21): 1⁃13. |
4 | Fei X, Gaelle F, Serge B. Recent developments in fire retardancy of polybutylene succinate[J]. Polymer Degradation and Stability, 2021, 183:109466. |
5 | Hu C, Bourbigot S, Deiaunay T. Poly(isosorbide carbonate): A ‘green’ char forming agent in polybutylene succinate intumescent formulation[J]. Composites Part B: Engineering, 2020, 184:107675. |
6 | He W T, Song P A, Yu B. Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame⁃retardant poly(butylene succinate) composites[J]. Progress in Materials Science, 2020, 114:2 552⁃2 565. |
7 | Xiao F, Fontaine G, Bourbigot S. Recent developments in fire retardancy of polybutylene succinate[J]. Polymer Degradation and Stability, 2021, 183: 109466. |
8 | Yue X, Li J, Liu P, et al. Investigation of flame⁃retarded poly(butylene succinate) composites using MHSH as synergistic and reinforced agent[J]. Journal of Materials Science, 2017, 53 (7):5 004⁃5 015. |
9 | Zhang S, Li Y, Guo J, et al. Preparation of hexakis (4⁃aldehyde phenoxy) cyclotriphosphazene grafted kaolinite and its synergistic fire resistance in poly (butylene succinate) [J]. Polymer Composites,2019, 41 (3):1 024⁃1 035. |
10 | Gu L, Zhang S, Li H, et al. Preparation of intumescent flame retardant poly(butylene succinate) using urea intercalated kaolinite as synergistic agent[J]. Fibers and Polymers, 2019, 20 (8): 1 631⁃1 640. |
11 | Xu X, Jiang Z, Zhu K, et al. Highly flame⁃retardant and low toxic polybutylene succinate composites with functionalized BN@APP exfoliated by ball milling[J]. Journal of Applied Polymer Science, 2022, 139(21):52217. |
12 | Zhang Y, Hu Y, Wang J, et al. Engineering carbon nanotubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly(butylene succinate) [J]. Composites Part A: Applied Science and Manufacturing, 2018, 115:215⁃227. |
13 | Yue J, Liu C, Zhou C, et al. Enhancing flame retardancy and promoting initial combustion carbonization via incorporating electrostatically surface⁃functionalized carbon nanotube synergist into intumescent flame⁃retardant poly(butylene succinate)[J]. Polymer, 2020,189:122197. |
14 | Wang Y, Liu C, Shi X, et al. Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Polymer Composites, 2019, 40 (1): 202⁃209. |
15 | Hu C, Bourbigot S, Delaunay T, et al. Poly(isosorbide carbonate): A ‘green’ char forming agent in polybutylene succinate intumescent formulation[J]. Composites Part B: Engineering, 2020, 184:107675. |
16 | Wang Y, Liu C, Lai J, et al. Soy protein and halloysite nanotubes⁃assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate) [J]. Polymer Testing, 2020, 81:106174. |
17 | Suwanniroj A, Suppakarn N. Influence of glycidyl methacrylate grafted poly (butylene succinate) (PBS⁃g⁃GMA) on flame retardancy and mechanical properties of water hyacinth fiber/ammonium polyphosphate/poly (butylene succinate) composites[J]. Journal of Applied Polymer Science, 2022, 139(43):53063. |
18 | Yue X, Li J, Liu P, et al. Study on the performance of flame⁃retardant esterified starch⁃modified cassava dregs⁃PBS composites[J]. Journal of Applied Polymer Science, 2018, 135(18):46210. |
19 | Yue X, Li Y, Li J, et al. Improving fire behavior and smoke suppression of flame retardant PBS composites using lignin chelate as carbonization agent and catalyst[J]. Journal of Applied Polymer Science, 2021, 138(41):51199. |
20 | Yue X P, Li J, Xu Y J, et al. Esterified lignin in intumescent flame retardant modified PBS application and performance research in composite materials[J]. Journal of Shanxi University of Science & Technology, 2020, 38(3):2096. |
21 | Yue X, Li C, Li Y. Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame⁃retardant poly(butylene succinate) composites[J]. Polymers for Advanced Technologies 2021, 32 (6): 2 552⁃2 565. |
22 | Xiao F, Fontaine G, Bourbigot S. Improvement of flame retardancy and antidripping properties of intumescent polybutylene succinate combining piperazine pyrophosphate and zinc borate[J]. Applied Polymer Materials, 2022, 4(3):1 911⁃1 921. |
23 | Xiao F, Fontaine G, Bourbigot S. Intumescent polybutylene succinate: Ethylenediamine phosphate and synergists[J]. Polymer Degradation and Stability, 2021, 192:109707. |
24 | Xiao F, Fontaine G, Bourbigot S. A highly efficient intumescent polybutylene succinate: Flame retardancy and mechanistic aspects[J]. Polymer Degradation and Stability, 2022, 196:109830. |
25 | Wang Y, Jiang D, Wen X, et al. Investigating the effect of aluminum diethylphosphinate on thermal stability, flame retardancy, and mechanical properties of poly(butylene succinate)[J]. Frontiers in Materials, 2021, 8:737749. |
26 | Zou L Y, Zhao Y C, Han B Y, et al. Trinity intumescent alkyl phosphonate on biodegradable plastic PBS flame retardant and anti droplet effects[J]. China Plastics Indusry, 2018, 46(1): 104⁃108. |
27 | Chen S, Wu F, Hu Y, et al. A fully bio⁃based intumescent flame retardant for poly(butylene succinate) [J]. Materials Chemistry and Physics, 2020, 252:123222. |
28 | Chen S, Lin S, Hu Y, et al. A lignin⁃based flame retardant for improving fire behavior and biodegradation performance of polybutylene succinate[J]. Polymers for Advanced Technologies, 2018, 29 (12): 3 142⁃3 150. |
29 | Wang Y, Yue J, Xie R,et al. High⁃value use of lignocellulosic⁃rich eucommia residue for promoting mechanical properties and flame retardancy of poly(butylene succinate) [J]. Journal of Applied Polymer Science, 2019, 137(14):48543. |
30 | Lule Z C, Kim J. Organic⁃inorganic hybrid filler for improved thermal conductivity and anti⁃dripping performance of polybutylene succinate composite[J]. Journal of Cleaner Production, 2022, 340:130781. |
31 | Zhao J H, Wang X Q, Zeng J, et al. Biodegradation of poly(butylene succinate) in compost[J]. Journal of Applied Polymer Science, 2005, 60(9): 2 273⁃2 278. |
32 | He L, Shi Y D, Wang Q W. Nanocomposites: a new class of flame retardants for polymers[J]. Plastics, Additives and Compounding, 2002, 4(10): 22⁃28. |
33 | Kahkesh Saman, Rafizadeh Mehdi. Flame retardancy and thermal properties of poly(butylenesuccinate)/nano⁃boehmite composites prepared via in situ polymerization[J]. Polymer Engineering & Science, 2020, 60(9): 2 262⁃2 271. |
34 | Chen Q, Wen X, Chen H. Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate)[J]. Polymers for Advanced Technologies, 2015, 26(2): 128⁃135. |
35 | Mokhena T C, Sadiku E R, Ray S S, et al. The effect of expanded graphite/clay nanoparticles on thermal, rheological, and fire⁃retardant properties of poly(butylene succinate)[J]. Polymer Composites, 2021, 42 (12): 6 370⁃6 382. |
36 | Fu X J, Yue J F, Luo L H, et al. Study on fire safety behavior of cellulose nanocrystalline flame retardant carbonization on polybutylene succinate[J]. Acta Polymerica Sinice, 2020, 51(8): 911⁃920. |
37 | Chen H, Wang T, Wen Y, et al. Expanded graphite assistant construction of gradient⁃structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties[J]. Composites Part B: Engineering, 2019, 177:107402. |
38 | Zhou X, Wu T. Synthesis characterization of phosphorus⁃containing copolyester and its application as flame retardants for poly(butylene succinate) (PBS)[J].Chemosphere, 2019, 235: 163⁃168. |
[1] | 王玉伟, 肖润祥, 张宏凯, 官文瑾, 邓亚峰. 纳米纤维基空气过滤材料的研究进展[J]. 中国塑料, 2023, 37(9): 115-124. |
[2] | 张文睿 贾涵 张鑫 潘亚敏 刘春太 申长雨 刘宪虎. 超高分子量聚乙烯薄膜制备方法与应用[J]. , 2023, 37(5): 1-8. |
[3] | 李玉峰 赵阳 刘丽爽 冯峰 高晓辉 何锡凤. 乳液聚合法制备聚合物/石墨烯复合材料研究进展[J]. , 2023, 37(4): 112-120. |
[4] | 邢利欣 任小龙 廖文靖 陈志平 冯羽风. 可生物降解双向拉伸聚乳酸薄膜成型技术研究进展[J]. , 2023, 37(4): 121-135. |
[5] | 马俊丞, 徐双平, 王馨甜, 贾宏葛, 张明宇, 蘧延庆. 生物基材料在碘吸附中的研究进展[J]. 中国塑料, 2023, 37(11): 178-191. |
[6] | 马志蕊, 尹甜, 蒋志魁, 杨璠, 祝孟珂, 杨洋, 韩宇, 翁云宣, 张彩丽. PBS及其复合膜的制备及应用研究进展[J]. 中国塑料, 2023, 37(10): 24-33. |
[7] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[8] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[9] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[10] | 蒋森, 王立岩, 陈延明, 张乐, 翟桂法. MPO改性PBS共聚酯的合成及其热性能研究[J]. 中国塑料, 2022, 36(4): 24-29. |
[11] | 杨钦杰, 李佳汶, 李明, 陈刚, 李光照, 彭必友, 韩锐. 熔融沉积3D打印设备研究进展[J]. 中国塑料, 2022, 36(2): 157-171. |
[12] | 赵雯雯, 徐双平, 贾宏葛, 王兴, 徐靖宇. 超支化聚合物气体分离膜材料的研究进展[J]. 中国塑料, 2022, 36(11): 84-93. |
[13] | 姚逸, 张尔杰, 卢昌利, 王超军, 焦建, 曾祥斌. 食品接触法规对PBS发展的影响浅析[J]. 中国塑料, 2022, 36(10): 125-130. |
[14] | 薛钰, 殷德贤, 项鲁冰, 周远, 杨雪月, 周洪福. 扩链PBS的微孔发泡行为研究[J]. 中国塑料, 2021, 35(8): 125-130. |
[15] | 李向阳, 杨林柱, 翟国强, 高婉琴, 王克智, 李训刚. 成核剂对聚丁二酸丁二醇酯结晶与性能的影响[J]. 中国塑料, 2021, 35(8): 146-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||