
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (2): 157-171.DOI: 10.19491/j.issn.1001-9278.2022.02.022
杨钦杰1, 李佳汶1, 李明3, 陈刚1, 李光照1, 彭必友1, 韩锐1,2()
收稿日期:
2021-07-14
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
韩锐(1988—),男,副教授,主要从事聚合物基复合材料、聚合物结构与性能设计、材料仿真模拟与分析研究,ruihan_harry@163.com基金资助:
YANG Qinjie1, LI Jiawen1, LI Ming3, CHEN Gang1, LI Guangzhao1, Peng Biyou1, HAN Rui1,2()
Received:
2021-07-14
Online:
2022-02-26
Published:
2022-02-23
Contact:
HAN Rui
E-mail:ruihan_harry@163.com
摘要:
阐述了3D打印技术的种类,介绍了熔融沉积成型(FDM)技术的原理、特点及其目前存在的问题;从控制方法(温度控制、运动控制、路径控制)和运动机构(送料机构、喷嘴、运动机构)两个方面系统综述了国内外FDM 3D打印设备的最新研究进展;最后,指出了目前FDM 3D打印设备所面临的挑战及需要解决的问题,展望了FDM 3D打印设备未来的发展方向。
中图分类号:
杨钦杰, 李佳汶, 李明, 陈刚, 李光照, 彭必友, 韩锐. 熔融沉积3D打印设备研究进展[J]. 中国塑料, 2022, 36(2): 157-171.
YANG Qinjie, LI Jiawen, LI Ming, CHEN Gang, LI Guangzhao, Peng Biyou, HAN Rui. Research progress in fused deposition modeling 3D printing equipment[J]. China Plastics, 2022, 36(2): 157-171.
3D打印技术 | 常用材料 | 优点 | 缺点 | 精度/µm |
---|---|---|---|---|
FDM | 热塑性聚合物 | 设备简单,成本低 | 材料种类少,制件表面质量低 | 50~200 |
光固化成型 | 光敏树脂 | 打印精度高 | 成型速度慢,设备及材料昂贵 | 10 |
选择性激光烧结 | 金属粉末 | 制件强度高,支撑易剥离 | 成型速度慢,设备昂贵 | 80~250 |
喷墨打印 | 墨水 | 能成型大型制件,打印速度快 | 制件表面质量低 | 5~200 |
分层实体制造 | 陶瓷 | 成本低,成型速度快 | 尺寸精度差 | 取决于层压板厚度 |
3D打印技术 | 常用材料 | 优点 | 缺点 | 精度/µm |
---|---|---|---|---|
FDM | 热塑性聚合物 | 设备简单,成本低 | 材料种类少,制件表面质量低 | 50~200 |
光固化成型 | 光敏树脂 | 打印精度高 | 成型速度慢,设备及材料昂贵 | 10 |
选择性激光烧结 | 金属粉末 | 制件强度高,支撑易剥离 | 成型速度慢,设备昂贵 | 80~250 |
喷墨打印 | 墨水 | 能成型大型制件,打印速度快 | 制件表面质量低 | 5~200 |
分层实体制造 | 陶瓷 | 成本低,成型速度快 | 尺寸精度差 | 取决于层压板厚度 |
1 | BERMAN B . 3-D printing: The new industrial revolution[J]. Business Horizons, 2012, 55(2): 155⁃162. |
2 | 冯东, 王博, 刘琦, 等 . 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1 373⁃1 388. |
FENG D , WANG B , LIU Q , et al . Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1 373⁃1 388. | |
3 | 卢秉恒 . 增材制造技术——现状与未来[J]. 中国机械工程, 2020, 31(1): 19⁃23. |
LU B H . Additive manufacturing—current situation and future[J]. China Mechanical Engineering, 2020, 31(1): 19⁃23. | |
4 | NGO T D, KASHANI A , IMBALZANO G , et al . Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B⁃Engineering, 2018, 143: 172⁃196. |
5 | ALHNAN M A , OKWUOSA T C , SADIA M , et al . Emergence of 3D printed dosage forms: opportunities and challenges[J]. Pharmaceutical Research, 2016, 33(8):1 817⁃1 832. |
6 | YADAV D K , SRIVASTAVA R , DEV S , et al . Design & fabrication of ABS part by FDM for automobile application[J]. Materials Today: Proceedings, 2020, 26(2): 2 089⁃2 093. |
7 | LEE B H , ABDULLAH J , KHAN Z A , et al . Optimization of rapid prototyping parameters for production of flexible ABS object[J]. Journal of Materials Processing Technology, 2005, 169(1): 54⁃61. |
8 | NIKZAD M , MASOOD S H , SBARSKI I . Thermo⁃mechanical properties of a highly filled polymeric composites for fused deposition modeling[J]. Materials & Design, 2011, 32(6): 3 448⁃3 456. |
9 | WANG X , JIANG M , ZHOU Z W , et al . 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B⁃Engineering, 2017, 110: 442⁃458. |
10 | SAROIA J , WANG Y , WEI Q , et al . A review on 3D printed matrix polymer composites: its potential and future challenges[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(5/6): 1 695⁃1 721. |
11 | CHEN G , CHEN N , LI L A , et al . Ionic liquid modified poly(vinyl alcohol) with improved thermal processability and excellent electrical conductivity[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5 472⁃5 481. |
12 | GILMER E L , MILLER D , CHATHAM C A , et al . Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening[J]. Polymer, 2018, 152(12): 51⁃61. |
13 | 陈宁, 夏和生, 张杰, 等 . 聚合物基微纳米功能复合材料3D打印加工的研究[J]. 高分子通报, 2017(10): 41⁃51. |
CHEN N , XIA H S , ZHANG J , et al . Studies on 3D pringting of polymer⁃based micro/nano functional composities[J]. Polymer Bulletion, 2017(10): 41⁃51. | |
14 | PHAN D D , SWAIN Z R , MACKAY M E , et al . Rheological and heat transfer effects in fused filament fabrication[J]. Journal of Rheology, 2018, 62(5): 1 097⁃1 107. |
15 | GO J , SCHIFFRES S N , STEVENS A G , et al . Rate limits of additive manufacturing by fused filament fabrication and guidelines for high⁃throughput system design[J]. Additive Manufacturing, 2017, 16: 1⁃11. |
16 | 吴彦之, 侯和平, 徐卓飞, 等 . 熔融沉积成型喷头系统的研究进展[J]. 中国塑料, 2019, 33(9): 116⁃124. |
WU Y Z , HOU H P , XU Z F , et al . Research progress in fused deposition molding nozzle system[J]. China Plastics, 2017, 16:1⁃11. | |
17 | 李蒙 . 面向熔融沉积的设计制造一体化关键技术研究[D]. 西安:西安理工大学, 2019. |
18 | 唐通鸣, 张政, 邓佳文, 等 . 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43(6): 228⁃230. |
TANG T M , ZHANG Z , DENG J W ,et al . Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43(6):228⁃230. | |
19 | 唐庆瑞, 毕俊喜, 代志功, 等 . FDM成型系统喷头温度控制方法研究[J]. 机械研究与应用, 2018, 31(3): 179⁃181. |
TANG Q R , BI J X , DAI Z G , et al . Research on spray head temperature control of FDM molding system[J]. Mechanical Research & Application, 2018, 31(3): 179⁃181. | |
20 | XU Y , ZHENG Y , DU Y , et al . Adaptive condition predictive⁃fuzzy PID optimal control of start⁃up process for pumped storage unit at low head area[J]. Energy Conversion and Management, 2018, 177: 592⁃604. |
21 | GUO X , WANG J , LIAO F , et al . Neuroadaptive quantized PID sliding‐mode control for heterogeneous vehicular platoon with unknown actuator deadzone[J]. International Journal of Robust and Nonlinear Control, 2019, 29(1): 188⁃208. |
22 | ALTAN A , HACIOĞLU R . The algorithm development and implementation for 3D Printers based on adaptive PID controller[J]. Politeknik Dergisi, 2018, 21(3): 559⁃564. |
23 | LIU Z , WANG G , HUO Y , et al . Research on precise control of 3D print nozzle temperature in PEEK material[C] // 2nd International Conference On Materials Science, Resource And Environmental Engineering (MSREE 2017). Wuhan: American Institute of Physics Conference Series, 2017. |
24 | 曲兴田, 王学旭, 孙慧超, 等 . 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77⁃83. |
QU X T , WANG X X , SUN H C ,et al . Fuzzy self⁃adaptive PID control for fused deposition molding 3D printer heating system[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 77⁃83. | |
25 | 甘新基, 齐试航, 郑栋, 等 . 基于恒温控制的FDM 3D打印机PID系统设计[J]. 机械工程师, 2018(10): 1⁃2. |
GAN X J , QI S H , ZHENG D , et al . Design of PID system based on constant temperature control of FDM 3D Printer[J]. Mechanical Engineer, 2018(10): 1⁃2. | |
26 | TONG K , JOSHI S , LEHTIHET E A . Error compensation for fused deposition modeling (FDM) machine by correcting slice files[J]. Rapid Prototyping Journal, 2008, 14(1): 4⁃14. |
27 | ASIABANPOUR B , KHOSHNEVIS B . Machine path generation for the SIS process[J]. Robotics and Compu⁃ter Integrated Manufacturing, 2003, 20(3): 167⁃175. |
28 | TARABANIS K A . Path planning in the proteus rapid prototyping system[J]. Rapid Prototyping Journal, 2001, 7(5): 241⁃252. |
29 | ZHAO H , GU F , HUANG Q X , et al . Connected fermat spirals for layered fabrication[J]. ACM Transactions on Graphics (TOG), 2016, 35(4), 100:1⁃10. |
30 | XU J , SUN Y , WANG S . Tool path generation by offsetting curves on polyhedral surfaces based on mesh flattening[J]. The International Journal of Advanced Manufacturing Technology, 2013, 64: 1 201⁃1 212. |
31 | JIN G Q , LI W D , GAO L . An adaptive process planning approach of rapid prototyping and manufacturing[J]. Robotics and Computer⁃Integrated Manufacturing, 2013, 29(1): 23⁃38. |
32 | 熊文骏 . 向形心收缩的变距偏置填充算法[D]. 武汉:华中科技大学, 2007. |
33 | BO Q . Recursive polygon offset computing for rapid prototyping applications based on Voronoi diagrams[J]. The International Journal of Advanced Manufacturing Techno⁃logy, 2010, 49: 1019⁃1028. |
34 | HELD M . Voronoi diagrams and offset curves of curvili⁃near polygons[J]. Comput Aided Desgin, 1998, 30(4): 287⁃300. |
35 | 黄常标, 江开勇, 林俊义 . 平面轮廓线的偏置及干涉消除算法研究[J]. 机电工程技术, 2007(10): 75⁃77. |
HUANG C B , JIANG K Y , LIN J Y . Research on the offset and interference elimination algorithm of plane contour[J]. Mechanical & Electrical Engineering Technology, 2007(10): 75⁃77. | |
36 | 黄小毛, 叶春生, 吴思宇, 等 . 并行栅格扫描填充路径及其规划算法[J]. 计算机辅助设计与图形学学报, 2008(3): 326⁃331. |
HUANG X M , YE C S , WU S Y , et al . Path planning for parallel raster scanning and filling[J]. Journal of Computer⁃Aided Design & Computer Graphics, 2008(3): 326⁃331. | |
37 | YANG J , BIN H , ZHANG X , et al . Fractal scanning path generation and control system for selective laser sintering (SLS)[J]. International Journal of Machine Tools and Manufacture, 2003, 43(3): 293⁃300. |
38 | 张永, 周天瑞, 徐春晖, 等 . FDM快速成型工艺中的填充喷涂路径优化与仿真[J].锻压技术, 2008(2): 124⁃127. |
ZHANG Y , ZHOU T R , XU C H ,et al . Optimization and simulation on flling path in FDM rapid prototyping process[J]. Forging & Stamping Technology, 2008(2): 124⁃127. | |
39 | JIN G Q , LI W D , GAO L , et al . A hybrid and adaptive tool⁃path generation approach of rapid prototyping and manu⁃facturing for biomedical models[J]. Computers in Industry, 2013, 64(3): 336⁃349. |
40 | LIN Z , FU J , HE Y , et al . A robust 2D point⁃sequence curve offset algorithm with multiple islands for contour⁃parallel tool path[J]. Computer⁃Aided Design, 2013, 45(3): 657⁃670. |
41 | 朱传敏, 许田贵, 朱啟太 . 复合式路径填充算法的熔融沉积制造[J]. 现代制造工程, 2010(8): 89⁃92. |
ZHU C M , XU T G , ZHU Q T . An algorism for FDM based on complex flling path[J]. Modern Manufacturing Engineering, 2010(8): 89⁃92. | |
42 | 张潇 . 基于FDM三维打印的自适应路径规划研究[D]. 大连: 大连理工大学, 2019. |
43 | 曾善文 . 基于FDM的扫描路径分析与研究[D]. 成都: 西南交通大学, 2017. |
44 | 王德鹏 . 3D打印分层与路径规划算法的研究与应用[D]. 合肥: 合肥工业大学, 2019. |
45 | 李瑶 . 熔融沉积3D打印机控制系统研究及工艺参数优化. 天津: 河北工业大学, 2019. |
46 | 余可 . FDM三维打印机控制方法的研究与改进[D]. 南京: 东南大学, 2020. |
47 | 曹荃, 韩明, 肖跃加, 等 . 快速原型制造系统中自适应轨迹特征的插补算法[J]. 中国机械工程, 1997(5): 56⁃57. |
CAI Q , HAN M , XIAO Y J ,et al . Interpolation algorithm for adaptive trajectory features in rapid prototyping manufacturing system[J]. China Mechanical Enginee⁃ring, 1997(5): 56⁃57. | |
48 | 游达章, 苏旭武, 高贵兵 . 两轴联动的数字积分插补算法的实现[J]. 装备制造技术, 2008(1): 41⁃43. |
YOU D Z , SU X W , GAO G B . The realization of DDA interpolation algorithm with 2⁃axis motion[J]. Equipment Manufacturing Technology, 2008(1): 41⁃43. | |
49 | DAI M , CHEN Y , ZHENG C Q ,et al . Design of multi⁃step stepper motor coordinated control system based on Bresenham algorithm[C]//Presented at 24th International Conference on Mechatronics and Machine Vision in Practice. Auckland: IEE, 2017. |
50 | YU K , ZHANG Z S , ZHOU Z T ,et al . A modified bresenham algorithm for control system of fdm three⁃dimensional printer[J]. Mechatronics and Machine Vision in Practice 4,2020:125⁃139. |
51 | 陈广俊 . 基于熔融堆积原理快速成型设备控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
52 | 张文怀 . 适用于3D打印的路径速度规划算法研究[D]. 大连: 大连理工大学, 2020. |
53 | YIN H , WEN Q G , LIN G ,et al .Research on the control method of 3D printer based on FDM technology[C]//8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT). Cape Town: IEE, 2017. |
54 | 王志刚, 柯旭成, 王力, 等 . 3D打印机运动系统跟随误差分析及优化[J]. 机电工程技术, 2019, 48(11): 68⁃69. |
WANG Z G , KE X C , WANG L ,et al . The analysis and optimization of following error of 3d printer motion system[J]. Mechanical & Electrical Engineering Technology, 2019,48(11): 68⁃69. | |
55 | TURNER B N , STRONG R , GOLD S A . A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal, 2014, 20(3): 192⁃204. |
56 | 姜海峰 . SHJ型双螺杆挤压机的结构及其特点剖析[J]. 合成纤维工业, 2014, 37(1): 66⁃68. |
JIANG H F . Structure and characteristics of SHJ twin⁃screw extruder[J]. China Synthetic Fiber Industry, 2014, 37(1): 66⁃68. | |
57 | ZHANG P , WANG Z , LI J , et al . From materials to devices using fused deposition modeling: A state⁃of⁃art review[J]. Nanotechnology Reviews, 2020, 9(1): 1 594⁃1 609. |
58 | JONES R , HAUFE P , SELLS E , et al . RepRap⁃the replicating rapid prototyper[J]. Robotica, 2011, 29(1): 177⁃191. |
59 | XU W , JAMBHULKAR S , ZHU Y , et al . 3D printing for polymer/particle⁃based processing: A review[J]. Composites Part B: Engineering, 2021: 109102. |
60 | ELKINS K , NORDBY H , JANAK C , et al . Soft elastomers for fused deposition modeling[C]//1997 International Solid Freeform Fabrication Symposium. 1997: 441⁃448. |
61 | AWASTHI P , BANERJEE S S . Fused Deposition mo⁃deling of thermoplastics elastomeric materials: challenges and opportunities[J]. Additive Manufacturing, 2021: 102177. |
62 | PANDELIDI C , BATEMAN S , PIEGERT S , et al . The technology of continuous fibre⁃reinforced polymers: a review on extrusion additive manufacturing methods[J]. The International Journal of Advanced Manufacturing Technology, 2021: 1⁃21. |
63 | MATSUZAKI R , UEDA M , NAMIKI M , et al . Three⁃dimensional printing of continuous⁃fiber composites by in⁃nozzle impregnation[J]. Scientific Reports, 2016, 6:23058. |
64 | TIAN X , LIU T , YANG C , et al . Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A⁃Applied Science and Manufacturing, 2016, 88:198⁃205. |
65 | SPILLER Q , FLEISCHER J . Additive manufacturing of metal components with the ARBURG plastic freeforming process[J]. CIRP Annals, 2018,67(1): 225⁃228. |
66 | 韩霞 .快速成型技术及应用[M]. 北京:机械工业出版社, 2016: 50⁃51. |
67 | 郭永彪, 范桢, 董祥忠 . 基于螺杆挤出塑化熔融沉积先进快速成型技术的探讨[J]. 中国高新技术企业, 2007(10): 61⁃67. |
GUO Y B , FAN Z , DONG X Z . Discussion of screw extruding and plasticizing fuses deposition advanced rapid molding technology[J]. China High⁃Tech Enterprises, 2007(10): 61⁃67. | |
68 | SHOR L , GUCERI S , WEN X , et al . Fabrication of three⁃dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast⁃scaffold interactions in vitro[J]. Biomaterials, 2007, 28(35): 5291⁃5297. |
69 | TSENG J W , LIU C Y , YEN Y K , et al . Screw extrusion⁃based additive manufacturing of PEEK[J]. Materials & Design, 2018, 140: 209⁃221. |
70 | ZHOU Z , SALAORU I , MORRIS P , et al . Development of a direct feed fused deposition modelling technology for multi⁃material manufacturing[C]//19th Interna⁃tional Conference on Material Forming⁃ESAFORM 2016. Nantes, France: AIP Publishing LLC, 2016. |
71 | DORTMAN D , DIAGNE M , BITMEAD R , et al . Control⁃oriented energy⁃based modeling of a screw extruder used for 3D printing[C]//Asme Dynamic Systems & Control Conference. Minneapolis:ASME, 2016: 190004. |
72 | 徐常有 . 新型FDM粒料3D打印机研发及应用研究[D]. 北京:北京化工大学, 2018. |
73 | 杨卫民 . 高分子材料先进制造的微积分思想[J]. 中国塑料, 2010, 24(7): 1⁃6. |
YANG W M . A concept of differential and integral me⁃thod in advanced processing of polymer materials[J]. China Plastics, 2010,24(7): 1⁃6. | |
74 | 冷杰,许祥,陈宁,等 . 基于锥形螺杆挤出单元的熔融沉积成型3D打印机及实验研究[J]. 中国塑料, 2019, 33(1): 48⁃52. |
LENG J , XU X , CHEN N , et al . Development and research of fused deposition modeling 3D printer based on conical screw extrusion unit[J]. China Plastics, 2019, 33(1): 48⁃52. | |
75 | 王权杰 . 基于FDM的螺杆式3D打印机设计及实验研究[D]. 青岛: 青岛科技大学, 2019. |
76 | 陈中中, 李涤尘, 卢秉恒 . 气压式熔融沉积造型系统[C]//2001年中国机械工程学会年会暨第九届全国特种加工学术年会.苏州: 特种加工技术, 2001: 315⁃318. |
77 | CHEN Z , LI D , LU B , et al . Fabrication of osteo⁃structure analogous scaffolds via fused deposition modeling[J]. Scripta Materialia, 2005, 52(2): 157⁃161. |
78 | 廖道坤 . 气动式金属3D打印系统的搭建及实验研究[D]. 武汉:武汉大学, 2018. |
79 | COOGAN T J , KAZMER D O . In⁃line rheological monitoring of fused deposition modeling[J]. Journal of Rheology,2019, 63(1): 141⁃155. |
80 | LI Z , ZHANG D , SHAO L , et al . Experimental investigation using vibration testing method to optimize feed parameters of color mixing nozzle for fused deposition mode⁃ling color 3D printer[J]. Advances in Mechanical Engineering, 2019, 11(12): 1⁃12. |
81 | HELLER B P , SMITH D E , JACK D A . Effects of extrudate swell and nozzle geometry on fiber orientation in fused filament fabrication nozzle flow[J]. Additive Manufacturing, 2016, 12: 252⁃264. |
82 | 刘晓军 . 基于熔体微分原理的3D打印设备优化与制品增强工艺研究[D]. 北京: 北京化工大学, 2018. |
83 | 吴彦之 . 熔融沉积成型喷头装置仿真分析[D]. 西安: 西安理工大学, 2020. |
84 | DU J , WEI Z Y , WANG X , et al . An improved fused deposition modeling process for forming large⁃size thin⁃walled parts[J]. Journal of Materials Processing Techno⁃logy, 2016, 234:332⁃341. |
85 | RAVI A K , DESHPANDE A , HSU K H . An in⁃process laser localized pre⁃deposition heating approach to inter⁃layer bond strengthening in extrusion based polymer additive manufacturing[J]. Journal of Manufacturing Proce⁃sses, 2016, 24(1): 179⁃185. |
86 | SABYROV N , ABILGAZIYEV A , ALI M H . Enhancing interlayer bonding strength of FDM 3D printing technology by diode laser⁃assisted system[J]. The Interna⁃tional Journal of Advanced Manufacturing Technology, 2020, 108(1/2): 603⁃185. |
87 | TAYLOR A C , BEIRNE S , ALICI G , et al . System and process development for coaxial extrusion in fused deposition modelling[J]. Rapid Prototyping Journal, 2017, 23(3): 543⁃550. |
88 | HAN S , XIAO Y , QI T , et al . Design and analysis of fused deposition modeling 3D printer nozzle for color mi⁃xing[J]. Advances in Materials Science and Engineering, 2017:1⁃12. |
89 | BACA D , AHMAD R . The impact on the mechanical properties of multi⁃material polymers fabricated with a single mixing nozzle and multi⁃nozzle systems via fused deposition modeling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 4 509⁃4 520. |
90 | 王晓峰 . 基于木塑挤出3D成型的结构优化与传热模拟分析[D]. 青岛:青岛科技大学, 2017. |
91 | ILYÉS K , CRIS, AN A G , PORFIRE A , et al . Three⁃dimensional printing by fused deposition modeling (3DP⁃FDM) in pharmaceutics[J]. Farmacia, 2020, 68(4): 586⁃596. |
92 | KUN H , ZHIJUN Y , YUN B , et al . Intelligent fault diag⁃nosis of delta 3D printers using attitude sensors based on support vector machines[J]. Sensors, 2018, 18(4): 1298. |
93 | YADAV D , CHHABRA D , GARG R K , et al . Optimization of FDM 3D printing process parameters for multi⁃material using artificial neural network[J]. Materials Today: Proceedings, 2020, 21(3): 1 583⁃1 591. |
94 | CUNICO M W M , CARVALHO J D ,et al . Optimization of positioning system of FDM machine design using analytical approach[J]. Rapid Prototyping Journal, 2013, 19(3): 144⁃152. |
95 | BARMETT E , GOSSELIN C , et al . Largescale 3D printing with a cablesuspended robot[J]. Additive Manufacturing, 2015(7): 27⁃44. |
96 | ZI B , WANG N , QIAN S , et al . Design, stiffness analysis and experimental study of a cable⁃driven parallel 3D printer[J]. Mechanism and Machine Theory, 2019, 132: 207⁃222. |
97 | GIBERTI H , STRANO M , ANNONI M . An innovative machine for fused deposition modeling of metals and advanced ceramics[J]. EDP Sciences, 2016,43: 03003. |
98 | HU B , DUAN X , XING Z , et al . Improved design of fused deposition modeling equipment for 3D printing of high⁃performance PEEK parts[J]. Mechanics of Mate⁃rials, 2019, 137: 103139. |
99 | SHEN H , YE X , FU J . Research on the flexible support platform for fused deposition modeling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97: 3 205⁃3 221. |
100 | MUHAMMAD A , HYUN L J , LIN⁃YIP M J , et al . A new photopolymer extrusion 5⁃axis 3D printer[J]. Additive Manufacturing, 2018, 23: 355⁃361. |
101 | 张文君, 方辉, 袁泽林, 等 . 桌面型FDM 3D打印设备的优化设计与精度分析[J]. 机械, 2018, 45 (1): 5⁃10. |
ZHANG W J , FANG H , YUAN Z L , et al . Optimization design and precision analysis of desktop FDM 3D printing equipment[J]. Machinery, 2018, 45(1): 5⁃10. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[3] | 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 熔融沉积工艺参数对热塑性聚氨酯弹性体静动态力学性能的影响[J]. 中国塑料, 2022, 36(5): 29-35. |
[4] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[5] | 何金辉, 王海雄, 刘善坤, 李亚君. 基于二次回归正交旋转试验熔融沉积超声振动成型研究[J]. 中国塑料, 2022, 36(1): 107-113. |
[6] | 王若寒, 毕超, 李翱. 基于响应面法的对乙酰氨基酚片剂FDM成型的工艺优化研究[J]. 中国塑料, 2021, 35(9): 69-74. |
[7] | 关天民, 李钰, 翟贇, 雷蕾. 熔融沉积工艺成型材料的力学性能研究[J]. 中国塑料, 2021, 35(6): 68-73. |
[8] | 孟浩, 袁美霞, 华明. ABS的3D打印制品表面质量研究[J]. 中国塑料, 2021, 35(6): 74-79. |
[9] | 谷琳, 朱钰婷, 何家隆, 朱惠豪, 马玉录, 谢林生. 基于微纳层叠共挤的PLA/PCL可降解微层薄膜的制备及性能研究[J]. 中国塑料, 2021, 35(11): 7-14. |
[10] | 汤维, 钱立军, 邱勇, 陈雅君, 许博, 赵震. 聚丙烯材料无卤阻燃改性研究进展[J]. 中国塑料, 2021, 35(1): 136-149. |
[11] | 张春蕊, 鞠锦勇. 不同填充率下FDM 3D打印预制件建模及力学性能分析[J]. 中国塑料, 2020, 34(6): 66-72. |
[12] | 马昊鹏, 高丽洁, 焦志伟, 马具彪, 杨卫民. 非溶剂致相分离3D打印/复印成型技术研究[J]. 中国塑料, 2020, 34(12): 1-7. |
[13] | 雷经发, 魏展, 刘涛, 孙虹, 段焕天. 熔融沉积PLA材料动态力学行为及本构模型研究[J]. 中国塑料, 2020, 34(11): 59-65. |
[14] | 罗通通, 孙玲. 偶联剂对PLA/PBAT/WF复合材料3D打印性能的影响[J]. 中国塑料, 2020, 34(11): 66-72. |
[15] | 刘少刚 王李波 王晓龙 曹新鑫 周爱国. 高导热网络聚合物基复合材料的研究进展[J]. 中国塑料, 2019, 33(8): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||