
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (1): 136-149.DOI: 10.19491/j.issn.1001-9278.2021.01.020
• 综述 • 上一篇
汤维1,2, 钱立军1,2, 邱勇1,2(), 陈雅君1,2, 许博1,2, 赵震3
收稿日期:
2020-06-17
出版日期:
2021-01-26
发布日期:
2021-01-22
基金资助:
TANG Wei1,2, QIAN Lijun1,2, QIU Yong1,2(), CHEN Yajun1,2, XU Bo1,2, ZHAO Zhen3
Received:
2020-06-17
Online:
2021-01-26
Published:
2021-01-22
Contact:
QIU Yong
E-mail:yougqiu@btbu.edu.cn
摘要:
综述了近年来聚丙烯(PP)材料无卤阻燃改性技术的研究进展,并分析了其阻燃机理。用于PP材料的无卤阻燃剂以镁?铝系阻燃剂,磷系阻燃剂、膨胀型阻燃剂等为主。其中,无卤阻燃PP技术的研究中以成炭剂的开发及其复配方案最多,因此还对PP用成炭剂分子结构、应用方案等进行了详细介绍。
中图分类号:
汤维, 钱立军, 邱勇, 陈雅君, 许博, 赵震. 聚丙烯材料无卤阻燃改性研究进展[J]. 中国塑料, 2021, 35(1): 136-149.
TANG Wei, QIAN Lijun, QIU Yong, CHEN Yajun, XU Bo, ZHAO Zhen. Research Progress in Halogen⁃free Flame Retardant Technology for Polypropylene[J]. China Plastics, 2021, 35(1): 136-149.
1 | PALLMANN J, REN Y L, MAHLTIG B, et al. Phosphorylated Sodium Alginate/APP/DPER Intumescent Flame Retardant Used for Polypropylene [J]. Journal of Applied Polymer Science, 2019, 136(29): 47794. |
2 | HUANG N H, CHEN Z J, WANG J Q, et al. Synergistic Effects of Spiolite on Intumescent Flame Retardant Polypropylene [J]. Express Polymer Letters, 2010, 4(12): 743⁃752. |
3 | 刘愚潇, 金静, 舒中俊, 等. 表面改性氢氧化镁阻燃聚丙烯的研究进展[J]. 高分子通报, 2017, (07): 16⁃22. |
LIU Y X, JIN J, SHU Z J, et al. View on Progress of Surface Modification of Magnesium Hydroxide in Flame Retardant Polypropylene[J]. Polymer Bulletin, 2017, (07): 16⁃22. | |
4 | QIN Z L, LI D H, YANG R J. Preparation of Ammonium Polyphosphate Coated with Aluminium Hydroxide and Its Application in Polypropylene as Flame Retardant[J]. Journal of Inorganic Materials, 2015, 30(12): 972⁃978. |
5 | YUAN B H, FAN A, YANG M, et al. The Effects of Graphene on the Flammability and Fire Behavior of Intumescent Flame Retardant Polypropylene Composites at Different Flame Scenarios[J]. Polymer Degradation and Stability, 2017, 143: 42⁃56. |
6 | 赖学军, 邱杰东, 曾幸荣, 等. 磷⁃氮大分子膨胀型阻燃剂及其阻燃聚丙烯的研究进展[J]. 高分子材料科学与工程, 2015, 31(09): 184⁃190. |
LAI X J, QIU J D, ZENG X R, et al. Progress in Phosphorus⁃nitrogen Macromolecular Intumescent Flame Retardants and Their Application in Polypropylene[J]. Polymer Materials Science & Engineering, 2015, 31(09): 184⁃190. | |
7 | SAIN M, PARK S H, SUHARA F, et al. Flame Retardant and Mechanical Properties of Natural Fiber⁃PP Composites Containing Magnesium Hydroxide[J]. Polymer Degradation and Stability, 2004, 83(2): 363⁃367. |
8 | LIU L, ZHANG H K, SUN L, et al. Flame⁃retardant Effect of Montmorillonite Intercalation Iron Compounds in Polypropylene/Aluminum Hydroxide Composites System[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 807⁃814. |
9 | HONG C H, LEE Y B, BAE J W, et al. Tensile Properties and Stress Whitening of Polypropylene/Polyolefin Elastomer/Magnesium Hydroxide Flame Retardant Composites for Cable Insulating Application[J]. Journal of Applied Polymer Science, 2005, 97(6): 2 311⁃2 318. |
10 | YANG J W, ZHANG J, TANG L S. Flame Retardant Synergism of Bentonite and Magnesium Hydroxide in Polypropylene[J]. Asian Journal of Chemestry, 2013, 25(11): 6 121⁃6 124. |
11 | WANG W, PENG Y, ZAMMARANO M, et al. Effect of Ammonium Polyphosphate to Aluminum Hydroxide Mass Ratio on the Properties of Wood⁃flour/Polypropylene Composites[J]. Polymers, 2017, 9(11): 615. |
12 | XU S, LI S Y, ZHANG M, et al. Effect of P3O105⁃ Intercalated Hydrotalcite on the Flame Retardant Properties It and the Degradation Mechanism of a Novel Polypropylene/Hydrotalcite System[J]. Applied Clay Science, 2018, 163: 196⁃203. |
13 | ZHANG M, DING P, QU B J. Flammable, Thermal, and Mechanical Properties of Intumescent Flame Retardant PP/LDH Nanocomposites with Different Divalent Cations[J]. Polymer Composites, 2009, 30(7): 1 000⁃1 006. |
14 | ZHENG L, WU T, KONG Q H, et al. Improving Flame Retardancy of PP/MH/RP Composites through Synergistic Effect of Organic CoAl⁃layered Double Hydroxide[J]. Journal of Thermal Analysis and Calorimetry, 129(2): 1 039⁃1 046. |
15 | LIU Y, GAO Y S, WANG Q, et al. The Synergistic Effect of Layered Double Hydroxides with Other Flame Retardant Additives for Polymer Nanocomposites: a Critical Review[J]. Dalton Transactions, 2018, 47(42): 14 827⁃14 840. |
16 | LIANG J Z, CHEN Y, JIANG X H. Flame⁃retardant Propertied of PP/Al(OH)3/Mg(OH)2/POE/ZB Nanocomposites[J]. Polymer⁃Plastics Technology and Engineering, 2012, 51(5): 439⁃445. |
17 | SHENG Y, LI P, CHEN Y H. The Synergistic Effect of Transition Metal Nitrate in Polypropylene/Magnesium Hydroxide Flame Retarded Composite[J]. Advances in Polymer Technology, 2014, 33(s1): 2144 701⁃2144 708. |
18 | LIU L B, XU M J, HU Y M, et al. Surface Modification of Magnesium Hydroxide and Its Application in Flame⁃retardant Oil⁃extended Styrene⁃ethylene⁃butadiene⁃styrene/ Polypropylene Composites[J]. Journal of Applied Polymer Science, 2019, 136(9): 47129. |
19 | CHEN X L, YU J, GUO S Y, et al. Surface Modification of Magnesium Hydroxide and Its Application in Flame Retardant Polypropylene Composites[J]. Journal of Materials Science, 2009, 44(5): 1 324⁃1 332. |
20 | WAND D Y, LEUTERITZ A, KUTLU B, et al. Preparation and Investigation of the Combustion Behavior of Polypropylene/Organomodified MgAl⁃LDH Micro⁃nanocomposite[J]. Journal of Alloys and Compound, 2011, 509(8): 3 497⁃3 501. |
21 | CHEN D, ZHENG Q, LIU F, et al. Effects of Magnesium Hydroxide Containing Copper Compound on the Properties of Polypropylene Composites[J]. Polymer⁃Plastics Technology and Engineering, 2009, 48(4): 432⁃439. |
22 | ZHENG L, WU T, KONG Q H, et al. Improving Flame Retardancy of PP/MH/RP Composites through Synergistic Effect of Organic CoAl⁃layered Double Hydroxide[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1 039⁃1 046. |
23 | LIANG J Z, ZHU B, PQN M S, et al. Melt Shear Flow Behavior of Flame⁃retardant Polypropylene Composites Filled with Microencapsulated Red Phosphorus[J]. Journal of Thermoplastic Composite Materials, 2019, 32(10): 1 361⁃1 377. |
24 | WANG N, LI L T, XU Y, et al. Synergistic Effects of Red Phosphorus Masterbatch with Expandable Graphite on the Flammability and Thermal Stability of Polypropylene/Thermoplastic Polyurethane Blends[J]. Polymers & Polymer Composites, 2020, 28(3): 209⁃219. |
25 | CHEN X L, YU J, QIN J, et al. Combustion Behavior and Synergistic Effect of Zinc Borate and Microencapsulated Red Phosphorus with Magnesium Hydroxide in Flame⁃Retarded Polypropylene Composites[J]. Polymers & Polymer Composites, 2011, 19(6): 491⁃496. |
26 | LIANG J Z, FENG J Q, TSUI C P, et al. Mechanical Properties and Flame⁃retardant of PP/MRP/Mg(OH)2/Al(OH)3 Composites[J]. Composites Part B⁃Engineering, 2015, 71: 74⁃81. |
27 | YAN H W, WEI J L, YIN B, et al. Effect of the Surface Modification of Ammonium Polyphosphate on the Structure and Property of Melamine⁃formaldehyde Resin Microencapsulated Ammonium Polyphosphate and Polypropylene Flame Retardant Composites[J]. Polymer Bulletin, 2015, 72(11): 2 715⁃2 737. |
28 | JEENCHAM R, SUPPAKARN N, JARUKUMJORN K. Effect of Flame Retardants on Flame Retardant, Mechanical, and Thermal Properties of Sisal Fiber/Polypropylene Composites[J]. Composites Part B⁃Engineering, 2014, 56: 249⁃253. |
29 | PHAM L H, NGUYEN H D, KIM J, et al. Thermal Properties and Fire Retardancy of Polypropylene/Wood Flour Composites Containing Eco⁃friendly Flame Retardants[J]. Fibers and Polymers, 2019, 20(11): 2 383⁃2 389. |
30 | MA D, LI J. Synthesis of a Bio⁃based Triazine Derivative and Its Effects on Flame Retardancy of Polypropylene Composites[J]. Journal of Applied Polymer Science, 2020, 137(1): 47367. |
31 | DING S Y, LIU P, GAO C, et al. Synergistic Effect of Cocondensed Nanosilica in Intumescent Flame⁃retardant Polypropylene[J]. Polymers for Advanced Technologies, 2019, 30(4): 1 116⁃1 125. |
32 | ZAIKOV G E, LOMAKIN S M. Ecological Issue of Polymer Flame Retardancy[J]. Journal of Applied Polymer Science, 2002, 86(10): 2 449⁃2 462. |
33 | ZHENG Z H, LIU Y H, DAI B Y, et al. Fabrication of Cellulose⁃based Halogen⁃free Flame Retardant and Its Synergistic Effect with Expandable Graphite in Polypropylene[J]. Carbohydrate Polymers, 2019, 213: 257⁃265. |
34 | NOWAKI A, OUCHI T, MATSUMOTO K, et al. Effect of Expandable Graphite on Flame Retardation of Bamboo Fiber Reinforced Polypropylene Composite[J]. Kobunshi Ronbunshu, 2018, 75(2): 232⁃239. |
35 | MODESTI M, LORENZETTI A. Halogen⁃free Flame Retardants for Polymeric Foams[J]. Polymer Degradation and Stability, 2002, 78(1): 167⁃173. |
36 | LEE K, KIM H M, SEONG D G, et al. Synergistic Improvement of Flame Retardant Properties of Expandable Graphite and Multi⁃walled Carbon Nanotube Reinforced Intumescent Polyketone Nanocomposites[J]. Carbon, 2019, 143: 650⁃659. |
37 | GUO C G, ZHOU L, LV J X. Effects of Expandable Graphite and Modified Ammonium Polyphosphate on the Flame⁃retardant and Mechanical Properties of Wood Flour⁃polypropylene Composites[J]. Polymers & Polymer Composites, 2013, 21(7): 449⁃456. |
38 | LIM K S, BEE S T, SIN L T, et al. A Review of Application of Ammonium Polyphosphate as Intumescent Flame Retardant in Thermoplastic Composites[J]. Composites Part B⁃Engineering, 2016, 84: 155⁃174. |
39 | CAMINO G, COSTA L, TROSSARELLI L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part I – Thermal Degradation of Ammonium Polyphosphate⁃pentaerythritol Mixtures[J]. Polymer Degradation and Stability, 1984, 6(4):243⁃252. |
40 | CAMINO G, COSTA L, TROSSARELLI L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part II – Mechanism of Action in Polypropylene⁃ammonium polyphosphate⁃ pentaerythritol Mixtures[J]. Polymer Degradation and Stability, 1984, 7(1): 25⁃31. |
41 | CAMINO G, COSTA L, TROSSARELLI L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part III – Effect of Urea on the Ammonium Polyphosphate⁃pentaerythritol System[J]. Polymer Degradation and Stability, 1984, 7(4): 221⁃229. |
42 | CAMINO G, COSTA L, TROSSARELLI L. Study of the Mechanism of Intumescence in Fire Retardant Polymers: Part IV – Evidence of Ester Formation in Ammonium Polyphosphate⁃pentaerythritol Mixture[J]. Polymer Degradation and Stability, 1984, 8(1): 13⁃22. |
43 | WU Q, GUO J, FEI B, et al. Synthesis of a Novel Polyhydroxy Triazine⁃based Charring Agent and Its Effects on Improving the Flame Retardancy of Polypropylene with Ammonium Polyphosphate and Zinc Borate[J]. Polymer Degradation and Stability, 2020, 175: 109123. |
44 | ZHENG A N, XIA Y, LI N, et al. Synergistic Effects of Tetrabutyl Titanate on Intumescent Flame⁃retarded Polypropylene[J]. Journal of Applied Polymer Science, 2013, 130(6): 4 255⁃4 263. |
45 | LAI X J, QIU J D, LI H Q, et al. Flame⁃retardant and Thermal Degradation Mechanism of Caged Phosphate Charring Agent with Melamine Pyrophosphate for Polypropylene[J]. International Journal of Polymer Science, 2015, 360 274. |
46 | PENG H Q, ZHOU Q, WANG D Y, et al. A Novel Charring Agent Containing Caged Bicyclic Pphosphate and Its Application in Intumescent Flame Retardant Polypropylene Systems[J]. Journal of Industrial & Engineering Chemistry, 2008, 14(5): 589⁃595. |
47 | TIAN N N, WEN X, JIANG Z W, et al. Synergistic Effect Between a Novel Char Forming Agent and Ammonium Polyphosphate on Flame Retardancy and Thermal Properties of Polypropylene[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):10 905⁃10 915. |
48 | ZHANG S Q, LI B, LIN M, et al. Effect of a Novel Phosphorus⁃containing Compound on the Flame Retardant and Thermal Degradation of Intumescent Flame Retardant Polypropylene[J]. Journal of Applied Polymer Science, 2011, 122(5): 3 430⁃3 439. |
49 | XIAO D, LI Z, DE JUAN S, et al. Preparation, Fire Behavior and Thermal Stability of a Novel Flame Retardant Polypropylene System[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 321⁃329. |
50 | MA Z L, ZHANG W Y, LIU X Y. Using PA6 as Charring Agent in Intumescent Polypropylene Formulations Based on Carboxylated Polypropylene Compatibilizer and Nano⁃montmorillonite Synergistic Agent[J]. Journal of Applied Polymer Science, 2006, 101(1): 739⁃746. |
51 | CHEN M, TANG M Q, MA Y H, et al. Influence of Polyamide 6 as a Charring Agent on the Flame Retardancy, Thermal, and Mechanical Properties of Polypropylene Composites[J]. Polymer Engineering and Science, 2015, 55(6): 1 355⁃1 360. |
52 | LE BRAS M, BUGAJNY M, LEFEBVRE J M, et al. Use of Polyurethanes as Char⁃forming Agents in Polypropylene Intumescence Formulations[J]. Polymer International, 2000, 49(10): 1 115⁃1 124. |
53 | HORACEK H, GRABNER R. Advantages of Flame⁃retardants Based on Nitrogen Compounds[J]. Polymer Degradation and Stability, 1996, 54(2): 205⁃215. |
54 | CHEN Y J, WANG W, LIU Z Q, et al. Synthesis of a Novel Flame Retardant Containing Phosphazene and Triazine Groups and Its Enhanced Charring Effect in Poly(lactic acid) Resin[J]. Journal of Applied Polymer Science, 2017, 34: 44660. |
55 | TANG W, QIAN L J, CHENet al. Intumescent Flame Retardant Behavior of Charring Agent with Different Aggregation of Piperazine/Triazine Groups in Polypropylene[J]. Polymer Degradation and Stability, 2019, 169, 108982. |
56 | FENG C M, LIANG M Y, JIANG J L, et al. Synergistic Effect of a Novel Triazine Charring Agent and Ammonium Polyphosphate on the Flame Retardant Properties of Halogen⁃free Flame Retardant Polypropylene Composites[J]. Thermochimica Acta, 2016, 627: 83⁃90. |
57 | FENG C M, LI Z W, LIANG M Y, et al. Preparation and Characterization of a Novel Oligomeric Charring Agent and Its Application in Halogen⁃free Flame Retardant Polypropylene[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 238⁃246. |
58 | FENG C M, ZHANG Y, LIU S W, et al. Synthesis of Novel Triazine Charring Agent and Its Effect in Intumescent Flame⁃retardant Polypropylene[J]. Journal of Applied Polymer Science, 2012, 123(6): 3 208⁃3 216. |
59 | CHEN H D, WANG J H, NI A Q, et al. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites[J]. Materials, 2018, 11(1): 111. |
60 | SU X Q, YI Y W, TAO J, et al. Synergistic Effect Between a Novel Triazine Charring Agent and Ammonium Polyphosphate on Flame Retardancy and Thermal Behavior of Polypropylene[J]. Polymer Degradation and Stability, 2014, 105: 12⁃20. |
61 | YANG K, XU M J, LI B. Synthesis of N⁃ethyl Triazine⁃piperazine Copolymer and Flame Retardancy and Water Resistance of Intumescent Flame Retardant Polypropylene[J]. Polymer Degradation and Stability, 2013, 98(7):1 397⁃1 406. |
62 | WANG W, WEN P Y, ZHAN J, et al. Synthesis of a Novel Charring Agent Containing Pentaerythritol and Triazine Structure and Its Intumescent Flame Retardant Performance for Polypropylene[J]. Polymer Degradation and Stability, 2017, 144: 454⁃463. |
63 | XU M L, CHEN Y J, QIAN L J, et al. Component Ratio Effects of Hyperbranched Triazine Compound and Ammonium Polyphosphate in Flame⁃retardant Polypropylene Composites[J], Journal of Applied Polymer Science, 2014, 131: 41006. |
64 | 靳玉娟, 高鹏翔, 钱立军, 等. 超支化芳胺三嗪聚合物的合成及其对聚丙烯阻燃性能影响的研究[J]. 中国塑料, 2013, 27(05): 77⁃81. |
JIN Y J, GAO P X, QIAN L J, et al. Synthesis of Hyperbranched Aromatic Amine Triazine Polymer and Its Flame Retardation Performance on Polypropylene[J]. China Plastics, 2013, 27(05): 77⁃81. | |
65 | KE C H, LI J, FANG K Y, et al. Synergistic Effect Between a Novel Hyperbranched Charring Agent and Ammonium Polyphosphate on the Flame Retardant and Anti⁃dripping Properties of Polylactide[J]. Polymer Degradation and Stability, 2010, 95(5): 763⁃770. |
66 | LI J, KE C H, XU L, et al. Synergistic Effect Between a Hyperbranched Charring Agent and Ammonium Polyphosphate on the Intumescent Flame Retardance of Acrylonitrile⁃butadiene⁃styrene Polymer[J]. Polymer Degradation and Stability, 2012, 97(7): 1 107⁃1 113. |
67 | ZHU C J, HE M S, CUI J G, et al. Synthesis of a Novel Hyperbranched and Phosphorus⁃containing Charring⁃foaming Agent and Its Application in Polypropylene[J]. Polymers for Advanced Technologies, 2018, 29(9):2 449⁃2 456. |
68 | CHEN W Y, YUAN S S, SHENG Y, et al. Effect of Charring Agent THEIC on Flame Retardant Properties of Polypropylene[J]. Journal of Applied Polymer Science, 2015, 132(1): 41214. |
69 | GAO S, ZHAO X, LIU G S. Synthesis of Tris(2⁃hydroxyethyl) Isocyanurate Homopolymer and Its Application in Intumescent Flame Retarded Polypropylene[J]. Journal of Applied Polymer Science, 2017, 134(13): 44663. |
70 | DUAN L J, YANG H Y, SONG L, et al. Hyperbranched Phosphorus/nitrogen⁃containing Polymer in Combination with Ammonium Polyphosphate as a Novel Flame Retardant System for Polypropylene[J]. Polymer Degradation and Stability, 2016, 134: 179⁃185. |
71 | 刘晨曦, 马航, 胡波, 等. 焦磷酸哌嗪膨胀阻燃体系阻燃聚丙烯应用研究[J]. 塑料工业, 2019, 47(11): 130⁃133. |
LIU C X, MA H, HU B, et al. Study on The Application of Piperazine Pyrophosphate Intumescent Flame Retardant System in Flame Retardant Polypropylene[J]. China Plastics Industry, 2019, 47(11): 130⁃133. | |
72 | ZHANG C, GUO X D, MA S M, et al. Synthesis of a Novel Branched Cyclophosphazene⁃PEPA Flame Retardant and Its Application on Polypropylene[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137: 33⁃42. |
73 | SONG P A, FANG Z P, et al. Effects of Metal Chelates on a Novel Oligomeric Intumescent Flame Retardant System for Polypropylene[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(2): 286⁃291. |
74 | 郝建港, 吴涛, 王绪光, 等. 含铁层状复合氢氧化物对膨胀阻燃聚丙烯体系的抗滴落协效作用[J]. 功能材料, 2017, 48(08): 8 085⁃8 091. |
HAO J G, WU T, WANG X G, et al. The Anti⁃dripping Synergistic Effect of Iron⁃containing LDH with Intumescent Flame Retardant on the Properties of Polypropylene Composites[J]. Journal of Function Materials, 2017, 48(08): 8 085⁃8 091. | |
75 | YANG D D, HU Y, SONG L, et al. Catalyzing Carbonization Function of α⁃ZrP Based Intumescent Fire Retardant Polypropylene Nanocomposites[J]. Polymer Degradation and Stability, 2008, 93: 2 014⁃2 018. |
76 | 于守武, 肖淑娟, 韩艳丽. 膨胀性阻燃剂中协效剂的研究进展[J]. 中国塑料, 2015, 29(07): 1⁃6. |
YU S W, XIAO S J, HAN Y L. Research Progress of Synergistic Agents in Intumescent Flame Retardants[J]. China Plastics, 2015, 29(07): 1⁃6. | |
77 | FENG C M, LIANG M Y, JIANG J L, et al. Synergism Effect of CeO2 on the Flame Retardant Performance of Intumescent Flame Retardant Polypropylene Composites and Its Mechanism[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 405⁃414. |
78 | ZHANG Y, Li X N, FANG Z P, et al. Mechanism of Enhancement of Intumescent Fire Retardancy by Metal Acetates in Polypropylene[J]. Polymer Degradation and Stability, 2017, 136: 139⁃145. |
[1] | 吴唯, 胡焕波, 沈辉, 赵天瑜. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(7): 1-7. |
[2] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[3] | 魏思淼, 邵路山, 许准, 刘艳婷, 赵思衡, 许博. 次磷酸盐⁃环四硅氧烷双基化合物复配二乙基次磷酸铝对PA6的阻燃性能研究[J]. 中国塑料, 2022, 36(7): 129-135. |
[4] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[5] | 刘义, 孙伟, 曲国兴, 王叶, 袁宁, 杨少林, 许霞, 常小毅, 张宇飞. 薄壁注塑透明聚丙烯专用料的结构与性能分析[J]. 中国塑料, 2022, 36(7): 37-43. |
[6] | 李金凤, 梁卓恩, 彭新龙. 膨胀型阻燃剂/二乙基次磷酸铝阻燃改性不饱和树脂基复合材料[J]. 中国塑料, 2022, 36(6): 116-123. |
[7] | 陈轲, 刘鸣飞, 赵彪, 潘凯. 有机硅改性高分子材料阻燃及耐烧蚀性能研究进展[J]. 中国塑料, 2022, 36(6): 149-154. |
[8] | 孙伟, 刘义, 廖云龙, 陈俊佳. 聚丙烯粉料乙烯含量测定影响因素研究[J]. 中国塑料, 2022, 36(6): 54-59. |
[9] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[10] | 杨木森, 钱立军, 王靖宇, 赵震, 王光禹, 辛晓华. 磷酸三苯酯和甲基八溴醚在阻燃聚苯乙烯中的协同行为研究[J]. 中国塑料, 2022, 36(5): 36-42. |
[11] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[12] | 徐伟华, 郑宇, 沈向阳, 张炎, 刘桔文, 严石静. 不同POSS对磷⁃硅协同阻燃环氧树脂性能的影响[J]. 中国塑料, 2022, 36(4): 115-120. |
[13] | 刘川, 许苗军, 王景春, 李斌. 膨胀石墨对乙烯基硅橡胶的阻燃作用研究[J]. 中国塑料, 2022, 36(4): 15-18. |
[14] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[15] | 王青松. 高强度低VOC玻璃纤维增强聚丙烯材料的开发[J]. 中国塑料, 2022, 36(4): 30-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||