
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (1): 124-135.DOI: 10.19491/j.issn.1001-9278.2021.01.019
收稿日期:
2020-05-14
出版日期:
2021-01-26
发布日期:
2021-01-22
基金资助:
PENG Hui1,2, ZHAO Wei2(), CHANG Weiwei1, WANG Yiliang3,4
Received:
2020-05-14
Online:
2021-01-26
Published:
2021-01-22
Contact:
ZHAO Wei
E-mail:penghui420@163.com
摘要:
综述了激光诱导聚合物制备石墨烯近年来的研究进展及应用情况,重点总结了激光诱导过程中原料种类、气氛控制、激光功率、扫描速度、扫描次数等参数对所制备石墨烯的影响,及其在微型超级电容器、柔性传感、催化及环境处理领域的应用情况,最后简要讨论了该研究方向未来的发展趋势。
中图分类号:
彭辉, 赵伟, 常伟伟, 王义亮. 激光诱导聚合物制备石墨烯研究进展及应用[J]. 中国塑料, 2021, 35(1): 124-135.
PENG Hui, ZHAO Wei, CHANG Weiwei, WANG Yiliang. Research Progress in Preparation of Laser⁃induced Graphene and Its Applications[J]. China Plastics, 2021, 35(1): 124-135.
原料 | 气氛 | 激光参数 (功率;扫描速度; 扫描次数) | 应用 | 参考 文献 |
---|---|---|---|---|
PI | 空气 | 4.8 W;8.9 cm/s | 微型 超级电容器 | [ |
PI | 空气 | 0.5 W;0.85 cm/s | 传感器 | [ |
PI | 空气 | 7.5 W;1.4 cm/s | 传感器 | [ |
PI | 空气 | 4.5 W;6.35 cm/s | 传感器 | [ |
PI | 空气 | 0.81 W;5.84 cm/s | 催化 | [ |
PI | O2/空气/Ar/H2/SF6 | 1.5 W;15 cm/s | 环境处理 | [ |
PEEK | 空气 | 5 W;10 cm/s;6次 | 传感器 | [ |
蔗糖 | H2 | 7.5 W;15.24 cm/s | —— | [ |
纸 | 空气 | 5.8 W | 传感器 | [ |
酚醛树脂 | 空气 | 0.5 W;20 cm/s | 传感器 | [ |
木材 | Ar/H2 | 8.9 W;15 cm/s | 催化 | [ |
聚酰胺?酰亚胺 | 空气 | 3.75 W;0.75 cm/s | —— | [ |
PES | 空气 | 3 W;1.5 cm/s | —— | |
PEI | 空气 | 3.75 W;1.5 cm/s | —— | |
PEEK | 空气 | 3.75 W;1.5 cm/s; 4次 | —— | |
交联聚苯乙烯 | 空气 | 2.25 W;1.5 cm/s | —— | |
环氧树脂 | 空气 | 3.75 W;1.5 cm/s; 2次 | —— | |
磷酸处理 纤维素 | 空气 | 1.5 W;1.5 cm/s;3次 | —— |
原料 | 气氛 | 激光参数 (功率;扫描速度; 扫描次数) | 应用 | 参考 文献 |
---|---|---|---|---|
PI | 空气 | 4.8 W;8.9 cm/s | 微型 超级电容器 | [ |
PI | 空气 | 0.5 W;0.85 cm/s | 传感器 | [ |
PI | 空气 | 7.5 W;1.4 cm/s | 传感器 | [ |
PI | 空气 | 4.5 W;6.35 cm/s | 传感器 | [ |
PI | 空气 | 0.81 W;5.84 cm/s | 催化 | [ |
PI | O2/空气/Ar/H2/SF6 | 1.5 W;15 cm/s | 环境处理 | [ |
PEEK | 空气 | 5 W;10 cm/s;6次 | 传感器 | [ |
蔗糖 | H2 | 7.5 W;15.24 cm/s | —— | [ |
纸 | 空气 | 5.8 W | 传感器 | [ |
酚醛树脂 | 空气 | 0.5 W;20 cm/s | 传感器 | [ |
木材 | Ar/H2 | 8.9 W;15 cm/s | 催化 | [ |
聚酰胺?酰亚胺 | 空气 | 3.75 W;0.75 cm/s | —— | [ |
PES | 空气 | 3 W;1.5 cm/s | —— | |
PEI | 空气 | 3.75 W;1.5 cm/s | —— | |
PEEK | 空气 | 3.75 W;1.5 cm/s; 4次 | —— | |
交联聚苯乙烯 | 空气 | 2.25 W;1.5 cm/s | —— | |
环氧树脂 | 空气 | 3.75 W;1.5 cm/s; 2次 | —— | |
磷酸处理 纤维素 | 空气 | 1.5 W;1.5 cm/s;3次 | —— |
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5696):666⁃669. |
2 | PENG Z W, YE R Q, MANN J A, et al. Flexible Boron⁃Doped Laser⁃Induced Graphene Microsupercapacitors[J]. ACS Nano,2015,9(6):5 868⁃5 875. |
3 | TAO L Q, TIAN H, LIU Y, et al. An Intelligent Artificial Throat with Sound⁃Sensing Ability Based on Laser Induced Graphene[J]. Nature Communications,2017,8:14579. |
4 | VANEGAS D C, PATINO L, MENDEZ C, et al. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials[J]. Biosensors,2018,8(2):8020042. |
5 | ZHANG J B, ZHANG C H, SHA J W, et al. Efficient Water⁃Splitting Electrodes Based on Laser⁃Induced Graphene[J]. ACS Applied Materials and Interfaces,2017,9(32):26 840⁃26 847. |
6 | SINGH S P, LI Y L, BEER A, et al. Laser⁃Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action[J]. ACS Applied Materials and Interfaces,2017,9(21):18 238⁃18 247. |
7 | TITTLE C M, YILMAN D, POPE M A, et al. Robust Superhydrophobic Laser⁃Induced Graphene for Desalination Applications[J]. Advanced Materials Technologies,2018,3(2):1700207. |
8 | LIN J, PENG Z W, LIU Y Y, et al. Laser⁃Induced Porous Graphene Films from Commercial Polymers[J]. Nature Communications,2014,5:5714. |
9 | ZHANG K, TANG J, YUAN J S, et al. Production of Few⁃Layer Graphene via Enhanced High⁃Pressure Shear Exfoliation in Liquid for Supercapacitor Applications[J]. ACS Applied Nano Materials,2018,1(6):2 877⁃2 884. |
10 | DAVE S H, GONG C C, ROBERTSON A W, et al. Chemistry and Structure of Graphene Oxide via Direct Imaging[J]. ACS Nano,2016,10(8):7 515⁃7 522. |
11 | TSEN A W, BROWN L, HAVENER R W. et al. Polycrystallinity and Stacking in CVD Graphene[J]. Accounts of Chemical Research,2012,46(10):2 286⁃2 296. |
12 | DUY L X, Peng Z W, Li Y L, et al. Laser⁃Induced Graphene Fibers[J]. Carbon. 2018,126:472⁃479. |
13 | YANG W W, ZHAO W, Li Q S, et al. Fabrication of Smart Components by 3D Printing and Laser⁃Scribing Technologies[J]. ACS Applied Materials and Interfaces,2020,12(3):3 928⁃3 935. |
14 | ZHANG Z C, SONG M M, HAO J X, et al. Visible Light Laser⁃Induced Graphene from Phenolic Resin: A New Approach for Directly Writing Graphene⁃Based Electrochemical Devices on Various Substrates[J]. Carbon, 2018,127:287⁃296. |
15 | YE R Q, CHYAN Y, ZHANG J B, et al. Laser⁃Induced Graphene Formation on Wood[J]. Advanced Materials, 2017,29(37):1702211. |
16 | CHYAN Y, YE R Q, LI Y L, et al. Laser⁃Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food[J]. ACS Nano,2018,12(3):2 176⁃2 183. |
17 | YE R Q, PENG Z W, WANG T, et al. In Situ Formation of Metal Oxide Nanocrystals Embedded in Laser⁃Induced Graphene[J]. ACS Nano,2015,9(9):9 244⁃9 251. |
18 | LI Y L, LUONG D X, ZHANG J B, et al. Laser⁃Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces[J]. Advanced Materials,2017,29(27):1700496. |
19 | SHA J W, LI Y L, SALVATIERRA R V, et al. Three⁃Dimensional Printed Graphene Foams[J]. ACS Nano, 2017,11(7):6 860⁃6 867. |
20 | LUANG D X, SUBRAMANIAN A K, SILVA G A L, et al. Laminated Object Manufacturing of 3D⁃Printed Laser⁃Induced Graphene Foams[J]. Advanced Materials,2018,30(28):1707416. |
21 | PENG Z W, LIN J, YE R Q, et al. Flexible and Stackable Laser⁃Induced Graphene Supercapacitors[J]. ACS Applied Materials and Interfaces,2015,7(5):3 414⁃3 419. |
22 | RAHIMI R, OCHOA M, TAMAYOL A, et al. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon⁃Polyaniline Composite[J]. ACS Applied Materials and Interfaces, 2017,9(10):9 015⁃9 023. |
23 | LUO S D, HOANG P T, LIU T. Direct Laser Writing for Creating Porous Graphitic Structures and Their Use for Flexible and Highly Sensitive Sensor and Sensor Arrays[J]. Carbon,2016,96:522⁃531. |
24 | NAYAK P, JIANG Q, KURRA N, et al. Monolithic Laser Scribed Graphene Scaffolds with Atomic Layer Deposited Platinum for the Hydrogen Evolution Reaction[J]. Journal of Materials Chemistry A,2017,5(38):20 422⁃20 427. |
25 | DE ARAUJO W R, FRASSON CMR, AMEKU W A, et al. Single⁃Step Reagentless Laser Scribing Fabrication of Electrochemical Paper⁃Based Analytical Devices[J]. Angewandte Chemie International Edition, 2017,56(47):15 113⁃15 117. |
26 | BEIDAGHI M, GOGOTSI Y. Capacitive Energy Storage in Micro⁃Scale Devices: Recent Advances in Design and Fabrication of Micro⁃Supercapacitors[J]. Energy and Environmental Science,2014,7(3):867⁃884. |
27 | IN J B, HSIA B, J⁃HYOO, et al. Facile Fabrication of Flexible All Solid⁃State Micro⁃Supercapacitor by Direct Laser Writing of Porous Carbon in Polyimide[J]. Carbon,2015,83:144⁃151. |
28 | KIM K Y, CHOI H, VAN T C, et al. Simultaneous Densification and Nitrogen Doping of Laser⁃Induced Graphene by Duplicated Pyrolysis for Supercapacitor Applications[J]. Journal of Power Sources,2019,441:227199. |
29 | BANKS C E, COMPTON R G. New Electrodes for Old: From Carbon Nanotubes to Edge Plane Pyrolytic Graphite[J]. Analyst,2006,131(1):15⁃21. |
30 | GRIFFITHS K, DALE C, HEDLEY J, et al. Laser⁃Scribed Graphene Presents an Opportunity to Print a New Generation of Disposable Electrochemical Sensors[J]. Nanoscale,2014,6(22):13 613⁃13 622. |
31 | FENZL C, NAYAK P, HIRSCH T, et al. Laser⁃Scribed Graphene Electrodes for Aptamer⁃Based Biosensing[J]. ACS Sensors,2017,2(5):616⁃620. |
32 | TEHRANI F, BAVARIAN B. Facile and Scalable Disposable Sensor Based on Laser Engraved Graphene for Electrochemical Detection of Glucose[J]. Scientific Reports,2016,6:27975. |
33 | FU S F, ZHU C Z, SONG J H, et al. Highly Ordered Mesoporous Bimetallic Phosphides as Efficient Oxygen Evolution Electrocatalysts[J]. ACS Energy Letters,2016,1(4):792⁃796. |
34 | ZHANG J B, REN M Q, WANG L Q, et al. Oxidized Laser⁃Induced Graphene for Efficient Oxygen Electrocatalysis[J]. Advanced Materials,2018,30(21):1707319. |
35 | TILIAKOS A, TREFILOV AMI, TANASA E, et al. Laser⁃Induced Graphene as the Microporous Layer in Proton Exchange Membrane Fuel Cells[J]. Applied Surface Science,2020,504:144096. |
36 | RAO C N R, SOOD A K, VOGGU R, et al. Some Novel Attributes of Graphene[J]. The Journal of Physical Chemistry Letters,2010,1(2):572⁃580. |
37 | THAKUR A K, SINGH S P, THAMARAISELVAN C, et al. Graphene Oxide on Laser⁃Induced Graphene Filters for Antifouling, Electrically Conductive Ultrafiltration Membranes[J]. Journal of Membrane Science,2019,591:117 322. |
38 | RATHINAM K, SINGH S P, LI Y L, et al. Polyimide Derived Laser⁃Induced Graphene as Adsorbent for Cationic and Anionic Dyes[J]. Carbon,2017,124:515⁃524. |
39 | BAYATI M, PENG H M, DENG H, et al. Laser Induced Graphene/Ceramic Membrane Composite: Preparation and Characterization[J]. Journal of Membrane Science,2020,595:117537. |
40 | 占彦龙,李 文,李 宏,等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程,2018,34(4):147⁃158. |
ZHAN Y L, LI W, LI H, et al. Fabrication of Polytetrafluoroethylene Superhydrophobic Surface with Controllable Wettability by Laser Micromaching Technology[J]. Polymer Materials Science and Engineering,2018,34(4):147⁃158. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[5] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[6] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[7] | 田驰锋, 张洪申. 基于翅片式摩擦桶的车用聚合物粒子荷电及静电分离探索[J]. 中国塑料, 2022, 36(5): 75-80. |
[8] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[9] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[10] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[11] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[12] | 黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3): 167-176. |
[13] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[14] | 翟玉娇, 信春玲, 何亚东, 闫宝瑞, 乔林军. 聚丙烯/超临界氮气微孔注塑充模过程工艺参数研究[J]. 中国塑料, 2022, 36(3): 69-74. |
[15] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||