
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (6): 165-173.DOI: 10.19491/j.issn.1001-9278.2022.06.025
• 综述 • 上一篇
杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清
收稿日期:
2022-01-05
出版日期:
2022-06-26
发布日期:
2022-06-27
通讯作者:
马秀清,教授,主要从事聚合物加工、混合原理及设备等研究,maxq@mail. buct. edu. cn基金资助:
YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing
Received:
2022-01-05
Online:
2022-06-26
Published:
2022-06-27
Contact:
MA Xiuqing
摘要:
分别介绍了导电型聚合物/石墨烯复合材料的导电机理、制备方法以及相关的应用领域,分析了导电型聚合物/石墨烯复合材料目前存在的一些问题,并对导电型聚合物/石墨烯复合材料的未来发展作出了一定展望。
中图分类号:
杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173.
YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites[J]. China Plastics, 2022, 36(6): 165-173.
RGO 含量/ % | 复合材料的电导率/S·m-1 | |
---|---|---|
分散性差的RGO | 高度分散的RGO | |
0 | (6.91±1.69)×10-11 | (6.91±1.69)×10-11 |
0.05 | (1.68±0.52)×10-10 | (9.23±1.85)×10-10 |
0.10 | (3.25±1.06)×10-10 | (4.57±1.13)×10-9 |
0.20 | (6.92±1.75)×10-10 | (1.47±0.41)×10-8 |
RGO 含量/ % | 复合材料的电导率/S·m-1 | |
---|---|---|
分散性差的RGO | 高度分散的RGO | |
0 | (6.91±1.69)×10-11 | (6.91±1.69)×10-11 |
0.05 | (1.68±0.52)×10-10 | (9.23±1.85)×10-10 |
0.10 | (3.25±1.06)×10-10 | (4.57±1.13)×10-9 |
0.20 | (6.92±1.75)×10-10 | (1.47±0.41)×10-8 |
1 | 王明浩. 石墨烯的研究进展及应用前景概述[J]. 科技与创新, 2019, (20): 140⁃141. |
WANG M H. Research progress and application prospect of graphene[J]. Science and Technology & Innovation, 2019, (20): 140⁃141. | |
2 | Sheng P, Siehel E K, Gittleman J I. Fluctuation⁃induced tunneling conduction in carbon polyvinylchloride composites[J]. Physical Review Letters, 1978, 40(18): 1 197⁃1 200. |
3 | 焦剑, 姚军燕. 功能高分子材料 (第二版) [M]. 北京: 化学工业出版社, 2016: 114⁃124. |
4 | Rajagopal C, Satyam M. Studies on electrical conductivity of insulator & hyphen; conductor composites[J]. Journal of Applied Physics, 1978, 49(11): 5 536⁃5 542. |
5 | 何金名. 基于母粒法制备抗静电聚乙烯/炭黑/尼龙6复合材料的研究[D]. 湖南: 湘潭大学, 2017. |
6 | Medalia A. Electrical conduction in carbon black composites[J]. Rubber Chemistry and Technology, 1986, 59(3): 432⁃454. |
7 | Kirkpatrick S. Percolation and conduction[J]. Reviews of Modern Physics, 1973, 45(4): 574⁃588. |
8 | Zallen R. The physics of amorphous solids[M]. New York: Wiley Press, 1983. |
9 | Pang H, Chen T, Zhang G M, et a1. An electrically conducting polymer/graphene composite with a very low percolation threshold[J]. Materials Letters, 2010, 64(20): 2 226⁃2 229. |
10 | Bauhofer W, Kovacs J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology, 2009, 69(10): 1 486⁃1 498. |
11 | Lu J R, Weng W G, Chen X F, et a1. Novel piezoresistive material from directed shear⁃induced assembly of graphite nanosheets in polyethylene[J]. Advanced Functional Materials, 2005, 15(8): 1 358⁃1 363. |
12 | Zhang X W, Pan Y, Zheng Q, et a1. Time dependence of piezoresistance for the conductor⁃filled polymer composites[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(21): 2 739⁃2 749. |
13 | Wen F, Xu Z, Tan S B, et al. Chemical bonding⁃induced low dielectric loss and low conductivity in high⁃k poly(vinylidenefluoride⁃trifluorethylene)/graphene nanosheets nanocomposites[J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9 411⁃9 420. |
14 | Hu H, Zhao L, Liu J, et al. Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene[J]. Polymer: The International Journal for the Science and Technology of Polymers, 2012, 53(15): 3 378⁃3 385. |
15 | Kumar P, Yu S, Shahzad F, et al. Ultrahigh electrically and thermally conductive self⁃aligned graphene/polymer composites using large⁃area reduced graphene oxides[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2016, 101: 120⁃128. |
16 | Chen L, Lu L, Wu D J. Silicone rubber/graphite nanosheet electrically conducting nanocomposite with a low percolation threshold[J]. Polymer Composites, 2007, 28(4): 493⁃498. |
17 | Barroso⁃Bujans F, Boucher V M, Pomposo J A, et al. Easy⁃dispersible poly(glycidyl phenyl ether)⁃functionalized graphene sheets obtained by reaction of "living" anionic polymer chains [J]. Chemical Communications, 2012, 48(20): 2 618⁃2 620. |
18 | 王璐, 霍小平, 张永明. 聚乙烯醇/石墨烯复合材料的制备及其性能[J]. 现代塑料加工应用, 2020, 32(4): 21⁃24. |
Wang L, Huo X P, Zhang Y M. Synthesis of polyvinyl alcohol/graphene composites and its properties[J]. Modern Plastics Processing and Applications, 2020, 32(4): 21⁃24. | |
19 | Tang L C, Wan Y J, Yan D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2013, 60(14): 16⁃27. |
20 | 惠健, 任鹏刚, 李然, 等. 石墨烯纳米片在双连续相聚丙烯/高密度聚乙烯中的迁移行为对其导电性能的影响[J]. 高分子材料科学与工程, 2016, 32(7): 84⁃88. |
Hui J, Ren P G, Li R, et al. Influence of migration of graphene⁃nanosheets on the electrical behaviors of the PP/HDPE co⁃continuous phase blends[J]. Polymer Materials Science & Engineering, 2016, 32(7): 84⁃88. | |
21 | 翟惠佐. 高密度聚乙烯 (HDPE) 与功能化石墨烯复合材料的性能分析[J]. 冶金与材料, 2019, 39(6): 53⁃55. |
Zhai H Z, Performance analysis of high density polyethylene and functional graphene composites[J]. Metallurgy and materials, 2019, 39(6): 53⁃55. | |
22 | 范培宏. 基于石墨烯材料的防静电材料的制备与研究 [D] . 安徽: 合肥工业大学, 2013. |
23 | 李忠磊, 郭晓然, 朱亚坤, 等. HDPE/功能化石墨烯复合材料制备及性能研究[J]. 塑料科技, 2020, 48(2): 16⁃20. |
Li Z L, Guo X R, Zhu Y K, et al. Preparation and properties of HDPE/functional graphene composites[J]. Plastics Science and Technology, 2020, 48(2): 16⁃20. | |
24 | Wang, L, Wang, W C, Fu, Y, et al. Enhanced electrical and mechanical properties of rubber/graphene film through layer⁃by⁃layer electrostatic assembly[J]. Composites, Part B. Engineering, 2016, 90B(Apr.):457⁃464. |
25 | Xing W, Tang M Z, Wu J R, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method[J]. Composites science and technology, 2014, 99(Jul.30): 67⁃74. |
26 | Tang Z H, Kang H L, Shen Z L, et al. Grafting of polyester onto graphene for electrically and thermally conductive composites[J]. Macromolecules, 2012, 45(8): 3 444⁃3 451. |
27 | Long G C, Tang C Y, K⁃wWong. Resolving the dilemma of gaining conductivity but losing environmental friendliness in producing polystyrene/graphene composites via optimizing the matrix⁃filler structure[J]. Green chemistry, 2013, 15(3): 821⁃828. |
28 | 武思蕊, 李斌, 赵梁成, 等. 磁性石墨烯/聚氨酯柔性复合材料的制备及自修复效能[J]. 化工进展, 2020, 39(4): 1 422⁃1 430. |
Wu S R, Li B, Zhao L C, et al. Preparation and self⁃repairing efficiency of magnetic graphene/polyurethane flexible composites[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1 422⁃1 430. | |
29 | 马小凡, 胡云浩, 毕红华, 等. 隔离结构还原氧化石墨烯/天然橡胶导电复合材料的制备及其电性能研究[J]. 橡胶工业, 2021, 68(07): 498⁃502. |
Ma X F, Hu Y H, Bi H H, et al. Preparation and electrical properties of isolated structure reduced graphene oxide/natural rubber conductive composites[J]. China Rubber Industry, 2021, 68(07): 498⁃502. | |
30 | Wu Y, Wang Z, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9 059⁃9 069. |
31 | Yuan B H, Wang B B, Hu Y X, et al. Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: improving electrical conductivity and flame retardancy of polypropylene[J]. Composites Part A: Applied Scinece & Manufacturing, 2016, 84(A): 76⁃86. |
32 | 徐婷. 石墨烯导电复合材料的制备与研究[D]. 武汉: 湖北工业大学, 2017. |
33 | Jiang Q Y, Liao X, Li J S,et al. Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 310⁃319. |
34 | Liang C B, Song P, Qiu H, et al. Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105 512⁃105 512. |
35 | Mei X K, Lu L S, Xie Y X, et al. An ultra⁃thin carbon⁃fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding[J]. Nanoscale, 2019, 11(28): 13 587⁃13 599. |
36 | 刘玉荣. 碳材料在超级电容器中的应用[M]. 北京: 国防工业出版社, 2013. |
37 | Lyu S Y, Chang H J, Fu F, et al. Cellulose⁃coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability[J]. Journal of Power Sources, 2016, 327(Swp.30): 438⁃446. |
38 | Long C L, Wei T, Yan J, et al. Supercapacitors based on graphene⁃supported iron nanosheets as negative electrode materials[J]. ACS Nano, 2013, 7(12): 11 325⁃11 332. |
39 | Ren J, Ren R P, Lv Y K. Stretchable all⁃solid⁃state supercapacitors based on highly conductive polypyrrole⁃coated graphene foam[J]. Chemical Engineering Journal, 2018, 349:111⁃118. |
40 | 任秦博, 王景平, 杨立, 等. 用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J]. 材料导报, 2020, 34(01): 1 080⁃1 094. |
Ren Q B, Wang J P, Yang L, et al. Research progress of conductive polymer composites for resistive flexible strain sensors[J]. Materials Review, 2020, 34(01): 1 080⁃1 094. | |
41 | Lin Y, Dong X C, Liu S Q, et al. Graphene⁃elastomer composites with segregated nanostructured network for liquid and strain sensing application[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 24 143⁃24 151. |
42 | Niu D, Jiang W T, Ye G Y, et al. Graphene⁃elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection[J]. Materials Research Bulletin, 2018, 102(Jun.): 92⁃99. |
43 | Zeng Z H, Seyed Shahabadi S I, Che B Y, et al. Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites[J]. Nanoscale, 2017, 9(44): 17 396⁃17 404. |
[1] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[2] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[3] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[4] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[5] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[6] | 田驰锋, 张洪申. 基于翅片式摩擦桶的车用聚合物粒子荷电及静电分离探索[J]. 中国塑料, 2022, 36(5): 75-80. |
[7] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[8] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[9] | 阮芳涛, 夏成龙, 张宝根, 曹叶, 刘志, 徐珍珍, 章劲草. 芳纶包覆碳纤维增强环氧树脂的轴向压缩性能研究[J]. 中国塑料, 2022, 36(4): 19-23. |
[10] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[11] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[12] | 何毅, 赵广慧. 复合材料增强修复油气管道的研究进展[J]. 中国塑料, 2022, 36(4): 70-82. |
[13] | 程曼芳, 白继峰, 王文清, 雷良才, 李海英, 韩向艳, 胡跃鑫. 基于超支化聚对氯甲基苯乙烯聚合离子液体共混体系的制备与表征[J]. 中国塑料, 2022, 36(3): 40-47. |
[14] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[15] | 郝春波, 刘万胜, 赵欣麟, 王岩, 王月. 本体ABS用橡胶国产化替代分析及评价[J]. 中国塑料, 2022, 36(3): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||