
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (4): 175-189.DOI: 10.19491/j.issn.1001-9278.2022.04.025
收稿日期:
2021-10-19
出版日期:
2022-04-26
发布日期:
2022-04-24
通讯作者:
师文钊(1986—),副教授,从事功能性形状记忆复合材料及高性能相变复合材料研究,shiwenzhao@xpu.edu.cn基金资助:
LIU Wen, SHI Wenzhao(), LIU Jinshu, LU Shaofeng, ZHOU Hongjuan
Received:
2021-10-19
Online:
2022-04-26
Published:
2022-04-24
Contact:
SHI Wenzhao
E-mail:shiwenzhao@xpu.edu.cn
摘要:
从宏观与微观两个角度对电致形状记忆复合材料的形状记忆过程及机理进行阐述,详述了基于不同导电填料如纳米颗粒、连续纤维、短切纤维以及复合填料的电致形状记忆复合材料研究现状及其物理共混、原位聚合、冷冻干燥等制备方法。从均匀的导体单元、导体与基体之间的接口黏结以及导电网络结构等3个方面分析了电致形状记忆复合材料的导电机理并从微观结构上对纳米级的导电网络以及离子通道现象进行了概述。详细介绍了其在航空航天、生物医疗、纺织领域、电子半导体等领域的最近研究工作,并展望了电致形状记忆复合材料发展前景。
中图分类号:
刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189.
LIU Wen, SHI Wenzhao, LIU Jinshu, LU Shaofeng, ZHOU Hongjuan. Research progress in electro⁃active shape memory composite materials[J]. China Plastics, 2022, 36(4): 175-189.
样品 | PEG | PBS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc/℃ | Tm/℃ | ΔHc/J•g-1 | ΔHm/J•g-1 | Xc/% | Tc/℃ | Tm/℃ | ΔHc/J•g-1 | ΔHm/J•g-1 | Xc/% | |
PBSEG10K⁃38 | 13.01 | 34.49 | 22.54 | 20.42 | 25.83 | 74.33 | 110.94 | 41.77 | 37.83 | 59.82 |
PBSEG10K⁃40/CNT0.2 | 17.18 | 38.06 | 23.85 | 23.83 | 28.64 | 85.30 | 111.12 | 42.56 | 38.13 | 62.30 |
PBSEG10K⁃39/CNT0.5 | 18.73 | 38.25 | 24.56 | 24.23 | 29.87 | 86.73 | 112.30 | 44.43 | 41.15 | 66.15 |
PBSEG10K⁃39/CNT0.8 | 21.90 | 40.03 | 26.48 | 26.54 | 32.72 | 88.20 | 112.42 | 45.83 | 42.53 | 68.35 |
PBSEG10K⁃38/CNT1.0 | 22.85 | 41.51 | 28.49 | 27.40 | 34.67 | 88.70 | 113.61 | 47.16 | 44.56 | 70.46 |
PBSEG10K⁃49/CNT1.0 | 28.52 | 48.14 | 42.00 | 39.89 | 39.14 | 83.51 | 110.38 | 39.43 | 37.42 | 71.93 |
PBSEG10K⁃60/CNT1.0 | 31.32 | 51.01 | 73.54 | 72.16 | 57.82 | 82.66 | 108.13 | 38.89 | 35.67 | 87.42 |
PBSEG6K⁃50/CNT1.0 | 22.40 | 42.28 | 36.13 | 34.00 | 32.69 | 80.22 | 108.54 | 36.41 | 33.68 | 66.04 |
PBSEG2K⁃48/CNT1.0 | 2.38 | 27.44 | 25.00 | 24.59 | 24.63 | 75.23 | 98.48 | 35.01 | 31.25 | 58.92 |
样品 | PEG | PBS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc/℃ | Tm/℃ | ΔHc/J•g-1 | ΔHm/J•g-1 | Xc/% | Tc/℃ | Tm/℃ | ΔHc/J•g-1 | ΔHm/J•g-1 | Xc/% | |
PBSEG10K⁃38 | 13.01 | 34.49 | 22.54 | 20.42 | 25.83 | 74.33 | 110.94 | 41.77 | 37.83 | 59.82 |
PBSEG10K⁃40/CNT0.2 | 17.18 | 38.06 | 23.85 | 23.83 | 28.64 | 85.30 | 111.12 | 42.56 | 38.13 | 62.30 |
PBSEG10K⁃39/CNT0.5 | 18.73 | 38.25 | 24.56 | 24.23 | 29.87 | 86.73 | 112.30 | 44.43 | 41.15 | 66.15 |
PBSEG10K⁃39/CNT0.8 | 21.90 | 40.03 | 26.48 | 26.54 | 32.72 | 88.20 | 112.42 | 45.83 | 42.53 | 68.35 |
PBSEG10K⁃38/CNT1.0 | 22.85 | 41.51 | 28.49 | 27.40 | 34.67 | 88.70 | 113.61 | 47.16 | 44.56 | 70.46 |
PBSEG10K⁃49/CNT1.0 | 28.52 | 48.14 | 42.00 | 39.89 | 39.14 | 83.51 | 110.38 | 39.43 | 37.42 | 71.93 |
PBSEG10K⁃60/CNT1.0 | 31.32 | 51.01 | 73.54 | 72.16 | 57.82 | 82.66 | 108.13 | 38.89 | 35.67 | 87.42 |
PBSEG6K⁃50/CNT1.0 | 22.40 | 42.28 | 36.13 | 34.00 | 32.69 | 80.22 | 108.54 | 36.41 | 33.68 | 66.04 |
PBSEG2K⁃48/CNT1.0 | 2.38 | 27.44 | 25.00 | 24.59 | 24.63 | 75.23 | 98.48 | 35.01 | 31.25 | 58.92 |
1 | 魏 堃,朱光明,唐玉生. 电致型形状记忆复合材料复合材料的研究进展[J]. 材料导报,2011,25(7):9⁃12. |
WEI K, ZHU G M, TANG Y S. Research progress in electro⁃induced shape memory polymer composites [J]. Materials Review, 2011, 25(7):9⁃12. | |
2 | 胡 贵,陈 龙,刘 庆,等. 苯乙烯系电致形状记忆复合材料的结构与性能[J]. 现代塑料加工应用,2010,22(5):8⁃11. |
HU G, CHEN L, LIU Q. Structure and properties of styrene series electro⁃induced shape memory composite materials [J]. Modern Plastics Processing and Applications, 2010, 22(5):8⁃11. | |
3 | 张阿樱,吕海宝. MWCNT纳米纸/形状记忆复合材料导电性能研究[J]. 哈尔滨工程大学学报,2014(4):516⁃520. |
ZHANG A Y, LYU H B. Research on the conductive properties of MWCNT nano paper/shape memory polymer composites MWCNT nano paper/shape memory polymer composites [J]. Journal of Harbin Engineering University, 2014(4):516⁃520. | |
4 | 任天宁,朱光明. 电致形状记忆复合材料的制备与性能[J]. 航空材料学报,2018,38(6):57⁃63. |
REN T N, ZHU G M.Preparation and properties of electro⁃induced shape memory composites[J].Journal of Aeronautical Materials,2018,38(6):57⁃63. | |
5 | 陈 龙,胡 贵,刘 庆,等. LDPE/SEBS/CB电致形状记忆复合材料的结构与性能[J]. 塑料科技,2010,38(5):31⁃35. |
CHEN L, HU G, LIU Q, et al. Structure and properties of LDPE/SEBS/CB electro⁃induced shape memory composites [J]. Plastics Science and Technology, 2010, 38(5):31⁃35. | |
6 | 费国霞,龚启春,夏和生. 形状记忆聚氨酯/碳纳米管复合材料在形状记忆和热处理过程中导电性能变化[J]. 高分子材料科学与工程,2021,37(1):128⁃133. |
FEI G X, GONG Q C, XIA H S. Evolution of carbon nanotubes conductive networks of carbon nanotubes/shape memory polyurethane composites during shape memory and thermal treatment process[J]. Polymer Materials Science & Engineering, 2021, 37(1):128⁃133. | |
7 | 费国霞,李果,夏和生. 复合材料/碳纳米管电致形状记忆材料的多重形状记忆行为[C] // 2012年全国高分子材料科学与工程研讨会学术论文集(上册). 中国化学会、中国机械工程学会、中国材料研究学会:2012:2. |
8 | 张阿樱,吕海宝. 电致驱动巴基纸/形状记忆复合材料性能[J]. 哈尔滨工程大学学报,2015,36(10):1 417⁃1 420. |
ZHANG A Y, LYU H B. Properties of electrically actuated shape memory polymer composites reinforced by buck paper [J]. Journal of Harbin Engineering University,2015, 36(10):1 417⁃1 420. | |
9 | 赵 军,王桢文,陈 敏,等. 具有热致和电致双重响应特性的三重形状记忆复合材料[C]//2014年全国高分子材料科学与工程研讨会学术论文集(下册).中国化学会、中国机械工程学会、中国材料研究学会:2014:2. |
10 | 梁小燕,云宋建,宋卫宾. 导电型形状记忆复合材料的制备及性能测试[J]. 北京交通大学学报,2015,39(3):90⁃94. |
LIANG X Y, YUN S J, SONG W B. Preparation and evaluation of electro⁃induced shape memory polymers [J]. Journal of Beijing Jiao Tong University, 2015, 39(3):90⁃94. | |
11 | 代天卫,杨德超,刘丰祎. 一种形状记忆水凝胶材料的制备及其应用[J]. 云南化工,2021,48(1):26⁃28. |
DAI T W, TANG D C, LIU F Y. The preparation of shape memory hydrogel material and its application [J]. Yunnan Chemical Technology, 2021, 48(1):26⁃28. | |
12 | 鲁玺丽, 吕秀乾, 王建永. TiO2/PLCL可降解复合材料纳米复合材料的制备及形状记忆性能[J]. 中国有色金属学报(英文版),2013,23(1):120⁃127. |
LU X L, LV X Q, WANG J Y. Preparation and shape memory properties of TiO2/PLCL biodegradable polymer neocons posited [J]. The Chinese Journal of Nonferrous Metals (English Edition), 2013, 23(1):120⁃127. | |
13 | 吴同华,岳喜贵,梅笑寒,等. 三明治结构多壁碳纳米管/聚醚醚酮电磁屏蔽复合材料的制备[J]. 高等学校化学学报,2021,42(8):2 627⁃2 634. |
WU T H, YUE X G, MEI X H, et al. Preparation of MWCNTs/PEEK electromagnetic shielding composites with sandwich structure [J]. Chemical Journal of Chinese Universities, 2021, 42(8):2 627⁃2 634. | |
14 | 钟静萍,黄科薪,许文涛,等. 导电共聚物衍化新策略制备硫、氮共掺杂碳纳米管及其对改善PtCu纳米晶分散性与甲醇电催化氧化的促进作用[J]. 催化学报,2021,42(7):1 205⁃1 215. |
ZHONG J P, HUANG K X, XU W T, et al. New strategy of S, N Co⁃doping of conductive⁃copolymer⁃derived carbon nanotubes to effectively improve the dispersion of PtCu nanocrystals for boosting the electro catalytic oxidation of methanol [J]. Chinese Journal of Catalysis, 2021, 42(7):1 205⁃1 215. | |
15 | 赵中国,艾桃桃,刘国瑞,等. 多壁碳纳米管⁃聚氨酯/聚丙烯复合材料导电网络结构的演变与性能调控[J]. 复合材料学报,2021,38(3):770⁃779. |
ZHAO Z G, AI T T, LIU G R, et al. Evolution and performance control of the conductive network structure of multi⁃walled carbon nanotube⁃polyurethane/polypropylene composites [J]. Act Materia Composite Sonica, 2021, 38(3):770⁃779. | |
16 | 吴书航,乔小勇,王建峰,等. 炭黑对苯乙烯⁃丙烯腈共聚物/聚己内酯复合材料流变、力学及电学性能的影响[J]. 高分子材料科学与工程,2021,37(2):67⁃72. |
WU S H, QIAO X N, WANG J F, et al. Effect of carbon black on rheological, mechanical and electrical properties of styrene⁃acrylonitrile copolymer/polycaprolactone blends[J]. Polymer Materials Science & Engineering, 2021, 37(2):67⁃72. | |
17 | 丁 彬,王雪琴,单浩如,等. 具有形状记忆功能的超轻陶瓷/碳复合纳米纤维气凝胶[C]//中国纺织工程学会化纤专业委员会2017年年会暨中国化纤科技大会论文集. 2017:26⁃31. |
18 | 杨露寒,张家振,徐 煌,等.碳纳米管薄膜制备及其光电探测应用进展[J]. 红外与毫米波学报,2021,40(4):439⁃458. |
YANG L H, ZHANG J Z, XU H, et al. Progress in carbon nanotube films based photodetectors [J]. Journal of Infrared and Millimeter Waves, 2021, 40(4):439⁃458. | |
19 | 李连地,宋剑斌,黄裕娥. 炭黑对ASA/天然石墨复合材料的电磁屏蔽性能影响[J]. 塑料工业,2021,49(3):130⁃133. |
LI L D, SONG J B, HUANG Y E. Effects of carbon black on electromagnetic shielding performance of ASA/NGR composites[J]. China Plastics Industry, 2021, 49(3):130⁃133. | |
20 | 王文琪,林宇,吴国章. 炭黑填充橡胶复合材料的高频介电特性[J]. 高等学校化学学报,2018,39(10):2 320⁃2 326. |
WANG W Q, LIN Y, WU G Z. High⁃frequency specific dielectric properties of carbon black filled rubber composites [J]. Chemical Journal of Chinese Universities, 2018, 39(10):2 320⁃2 326. | |
21 | 罗晓民,葛炳辉,李维虎,等. 石墨烯/聚氨酯复合功能材料研究进展[J]. 功能材料,2015(16):16 044⁃16 051. |
LUO X M, GE B H, LI W H, et al. The research progress of graphene/polyurethane composite functional materials[J]. Journal of Functional Materials, 2015(16):16 044⁃16 051. | |
22 | 李金绒,赵 坤,李 龙,等. 磁致型聚己内酯/纳米四氧化三铁形状记忆复合电纺纤维的制备与表征[J]. 化工新型材料,2014,42(7):169⁃171. |
LI J R, ZHAO K, LI L, et al. Preparation and characterization of magnetically induced polycaprolactone/nano⁃ferric oxide shape memory composite electro spun fiber [J]. Advanced Materials Industry, 2014, 42(7):169⁃171. | |
23 | 宋 莹,刘 平,刘 莎,等. 炭黑在形状记忆复合材料中的应用研究进展[J]. 炭素技术,2020,39(1):29⁃34. |
SONG Y, LIU P, LIU S, et al. Research progress in the application of carbon black in shape memory polymer composites[J]. Carbon Techniques, 2020, 39(1):29⁃34. | |
24 | CHIMEH EBRAHIMBEIKI A, MONTAZER M, RASHIDI A. 纳米TiQ/炭黑改性PET织物及其导电与光活性的表征[J]. 新型炭材料,2019,28(4):313⁃320. |
CHIMEH EBRAHIMBEIKI A, MONTAZER M, RASHIDI A. Nano⁃TiQ/carbon black modified PET fabric and characterization of its conductivity and photo activity [J].New Carbon Materials,2019,28(4):313⁃320. | |
25 | 马 立. 形状记忆复合材料的最新研究进展[J]. 宇航材料工艺,2013,43(5):11⁃16. |
MA L. The latest research progress of shape memory composites [J]. Aerospace Materials & Technology, 2013, 43(5):11⁃16. | |
26 | 温红梅,修雪颖,和 晗,等. 形状记忆高分子材料的发展及应用概况[J]. 特种橡胶制品,2018,39(5):64⁃68. |
WEN H M, XIU X Y, HE H, et al. Development and application of shape memory polymer materials[J]. Special Purpose Rubber Products, 2018, 39(5):64⁃68. | |
27 | 刘海韬,程海峰,王 军,等. 不同碳黑填料含量2D⁃SiCf/SiC复合材料介电及雷达吸波性能研究[J]. 航空材料学报,2019,29(5):56⁃60. |
LIU H T, CHEN H F, WANG J, et al. Study on microwave permittivity and radar absorbing properties of 2D⁃SiCf/SiC composites with different carbon black filler contents[J]. Journal of Aeronautical Materials, 2019, 29(5):56⁃60. | |
28 | 刘 玲. 形状记忆高分子材料的新型共混制备方法[J]. 化工设计通讯,2018,44(5):72. |
LIU L. New blending method for shape memory polymer materials [J]. Chemical Engineering Design Communications, 2018, 44(5):72. | |
29 | 张岑岑,解敬文. 有机碳黑复合导电纤维混纺面料的设计[J]. 河南工程学院学报(自然科学版),2021,33(1):6⁃8. |
ZHANG C C, XIE J W. Design of carbon black composite nobler blended fabric [J]. Journal of Hernan Institute of Engineering (Natural Science Edition), 2021, 33(1):6⁃8. | |
30 | 赵 旭 .CNT海绵增强形状记忆复合材料的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2016. |
31 | 李 伟,蔺越国,卢 翔,等.碳纳米管对碳纤维复合材料导电性能的影响[J].高科技纤维与应用,2014,39(6):45⁃50. |
LI W, LIN Y G, LU X, et al. Effect of CNT to the electric property of carbon fiber composite material[J].Hi⁃Tech Fiber & Application,2014,39(6):45⁃50. | |
32 | 杨笑鹤,杨 强,杨 昊,等. 功能碳黑修饰的丝网印刷碳糊电极葡萄糖生物传感器的特性与机理[J]. 分析化学,2007,35(12):1 751⁃1 755. |
YANG X H, YANG Q, YANG H, et al. Performance and michalis of screen printed carbon paste electrodes glucose biosensors based on functional carbon black [J].Chinese Journal of Analytical Chemistry, 2007, 35(12):1 751⁃1 755. | |
33 | 马新龙,王雪杰,李圣平. 炭黑/活性炭复合材料的制备及其电容性能研究[J]. 电子元件与材料,2021,40(5):406⁃413. |
MA X L, WANG X J, LI S P. Preparation and capacitive performance of CB / CAC composites [J]. Electronic Components & Materials, 2021, 40(5):406⁃413. | |
34 | 冷劲松,兰 鑫,刘彦菊,等. 形状记忆复合材料及其在空间可展开结构中的应用[J]. 宇航学报,2010,31(4):950⁃956. |
LENG J S, LAN X, LIU Y J, et al. Shape memory polymers composites and their applications in deployable structures [J]. Journal of Astronautics, 2010, 31(4):950⁃956. | |
35 | 张冶文,牛奋英,安振连,等. 导电碳黑填充EVA半导电电极对聚乙烯中空间电荷注入的影响[J]. 高电压技术,2011,37(8):1 904⁃1 909. |
ZHANG Y W, NIU F Y, AN Z L, et al. Space charge LDPE by semi—conductive electrode with different carbon black filling rates [J]. High Voltage Engineering, 2011, 37(8):1 904⁃1 909. | |
36 | 焦红倩,酒红芳,常建霞,等. 电热双敏型形状记忆石墨烯/聚氨酯/环氧树脂复合材料的制备及其性能[J]. 过程工程学报,2016,16(1):164⁃169. |
JIAO H Q, JIU H F, CHANG J X, et al. Preparation and properties of electro thermal dual⁃sensitive shape memory graphene/polyurethane/epoxy resin composites [J]. The Chinese Journal of Process Engineering, 2016, 16(1):164⁃169. | |
37 | GAYATHRI A, SAJJA J N, DASWANI M V, et al. An extensive review of shape memory polymers for biomedical applications[C]//IOP Publishing.2020, 993(1): 012161. |
38 | LIN L L, ZHOU Q A, LI M J. A thermally and electrically shape memory polymer prepared by a novel electro⁃mixed fusion preparation method [J]. Materials Letters, 2019, 256(Dec.1):126574.1⁃126574.5. |
39 | LIU T Y, HUANG R QI, XIAO D, et al. Facile preparation of rapidly electro⁃active shape memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers [J]. Polymer: The International Journal for the Science and Technology of Polymers, 2017:11 428⁃11 435. |
40 | LU H B, LIU J Y, ZHU S P, et al. Enhanced electro⁃activated performance of shape memory polymer nanocomposites with self⁃assembled carbon nanofiber template [J]. Nanoscience and Nanotechnology Letters, 2015, 7(2):94⁃99. |
41 | LU H B, LIANG F, GOU J, et al. Synergistic effect of self⁃assembled carbon nanofibers and hexagonal boron nitride for improved electro⁃activated polymeric shape memory nanocomposite [J]. Journal of Intelligent Material Systems and Structures, 2015, 26(8):905⁃912. |
42 | DORIGATO A, PEGORETTI A. Evaluation of the shape memory behavior of a poly (cyclooctene) based nanocomposite device[J]. Polymer Engineering and Science, 2018, 58(3):430⁃437. |
43 | WANG E A, WU Y L, ISLAM D, et al. A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo⁃, electro⁃ and light⁃responsive shape memory effect [J]. Materials Letters, 2019, 238(Mar.1):54⁃57. |
44 | LI M Q, WU J M, SONG F, et al. Flexible and electro⁃induced shape memory poly (lactic acid)⁃based material constructed by inserting a main⁃chain liquid crystalline and selective localization of carbon nanotubes [J]. Composites Science and Technology, 2019, 173(Mar.22):1⁃6. |
48 | SONI H, NARENDRANATH S, RAMESH M R, et al. Enhanced process parameters using TOPSIS method during wire electro discharge machining of TiNiCo shape memory alloy[C]//AIP Conference Proceedings. AIP Publishing LLC, 2020, 2204(1): 040005. |
46 | KAUSAR A. Shape memory polystyrene⁃based nanocomposite: present status and future opportunities[J]. Journal of Macromolecular Science, Part A, 2021, 58(3): 182⁃191. |
47 | An investigation on electro⁃induced shape memory performances of CE/EP/CB/SCF composites applied for deployable structure [J]. Journal of Polymer Engineering, 2020, 40(3):203⁃210. |
48 | Pre⁃programmed tri⁃layer electro⁃thermal actuators composed of shape memory polymer and carbon nanotubes [J]. Soft Robotics, 2020, 7(2):123⁃129. |
49 | TEKAY E. Preparation and characterization of electro⁃active shape memory PCL/SEBS⁃g⁃MA/MWCNT nanocomposites [J]. Polymer: The International Journal for the Science and Technology of Polymers, 2020,209. |
50 | LIU T Z, ZHOU T Y, YAO Y T, et al. Stimulus methods of multi⁃functional shape memory polymer nanocomposites: a review [J]. Composites, Part A. Applied Science and Manufacturing, 2017, 100A20⁃30. |
51 | KHAN A, JT W J, PS S R K, et al. Machinability of Shape Memory Alloy Using Electro Spark Erosion Process[J]. 2021. |
52 | LIU Q, WANG W, REYNOLDS M F, et al. Micrometer⁃sized electrically programmable shape⁃memory actuators for low⁃power microrobotics[J]. Science Robotics, 2021, 6(52). |
53 | DORIGATO A, PEGORETTI A. Shape memory epoxy nanocomposites with carbonaceous fillers and in⁃situ generated silver nanoparticles [J]. Polymer Engineering and Science, 2019, 59(4):694⁃703. |
54 | CARLOS A, GARCIA R, DEIDRA H, et al. 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro⁃responsive toughness enhancement [J]. Materials Research Express, 2018, 5(6):065704 9pp). |
55 | ZHOU J, LI H, TIAN R, et al. Fabricating fast triggered electro⁃active shape memory graphite/silver nanowires/epoxy resin composite from polymer template[J]. Scientific Reports, 2017, 7(1). |
56 | PENG Q Y, CHENG J Z, LU S R, et al. Electro spun hyper branched polylactic acid–modified cellulose nanocrystals/polylactic acid for shape memory membranes with high mechanical properties [J]. Polymers for Advanced Technologies, 2020, 31(1):15⁃24. |
57 | LAN X, LIU L W, ZHANG F H, et al. World’s first spaceflight on⁃orbit demonstration of a flexible solar array system based on shape memory polymer composites[J]. Science China Technological Sciences, 2020, 63(8):1 436⁃1 451. |
58 | YANG Q H, WANG T, ZHANG, L A, et al. Nano⁃porous shape memory membrane: fabrication based on double discontinuous structures in ternary blend and pore⁃size manipulation by macroscopic deformation [J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behavior of Materials, 2019, 480(Jun.30):276⁃280. |
59 | JENA A, SAMAL B B, KUMAR C S, et al. Analysis of electro⁃thermo⁃mechanical behavior of thin film Ni50⁃Ti50 and Ni40⁃Ti50⁃Cu10 shape memory alloys for application in thermal actuators[J]. Materials Today: Proceedings, 2021. |
60 | ATOUFI Z, ZARRINTAJ, PAYAM, et al. A novel bio⁃electro active alginate⁃aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study [J]. Journal of Biomaterials Science, 2017, 28(13/15):1 617⁃1 638. |
61 | REN Z J, YUAN J P, SU X Y, et al. Multilayered microstructures with shape memory effects for vertical deployment [J]. Microsystem Technologies, 2020, 27(9):3 325⁃3 332. |
62 | CONG Y, LIU S H, WU F X, et al. Shape memory effect and rapid reversible actuation of nanocomposite hydrogels with electrochemically controlled local metal coordination and crosslinking[J]. Journal of Materials Chemistry, B. Materials for Biology and Medicine, 2020, 8(42):9 679⁃9 685. |
63 | DUAN X G, YU J Y, ZHU Y X, et al. Large⁃scale spinning approach to engineering knittable hydrogel fiber for soft robots[J]. ACS Nano, 2020, 14(11):14 929⁃14 938. |
64 | WANG Y K, WANG L C, ZHANG Y T, et al. Evaluating the effect of carbon black—a short carbon fiber hybrid filler on the electro⁃activated shape memory cyanate ester/epoxy composites[J]. Science of Advanced Materials, 2020, 12(5): 652⁃658. |
65 | SHI Y, CHEN Z. Function⁃driven design of stimuli⁃responsive polymer composites: recent progress and challenges [J]. Journal of Materials Chemistry, C. Materials for Optical and Electronic Devices, 2018, 6(44):11 817⁃11 834. |
66 | HE M J, XIAO W X, HUI X. Facile fabrication of ternary nanocomposites with selective dispersion of multi⁃walled carbon nanotubes to access multi⁃stimuli⁃responsive shape⁃memory effects [J]. Materials Chemistry Frontiers, 2017, 1(2):343⁃353. |
67 | RATEEYA S, WORARIN M, JUSTIN O Z, et al. Influence of the salt concentration on the properties of salt‐free polyelectrolyte complex membranes [J]. Macromolecular Materials and Engineering, 2019, 304(9). |
68 | JAHID, MD A, HU J L, THAKUR S. Novel approach of making porous polyurethane membrane and properties for apparel application [J]. Journal of Applied Polymer Science, 2020, 137(15/16). |
69 | ZENG C J, LIU L W, BIAN W F, et al. 4D printed electro⁃induced continuous carbon fiber reinforced shape memory polymer composites with excellent bending resistance[J]. Composites, Part B. Engineering, 2020, 194(Aug.1):108034.1⁃108034.13. |
70 | GONG X, XIE F, LIU L, et al. Electro⁃active variable⁃stiffness corrugated structure based on shape⁃memory polymer composite[J]. Polymers, 2020, 12(2): 387. |
71 | AYESHA K. Shape Memory polystyrene⁃based nanocomposite: present status and future opportunities [J]. Journal of Macromolecular Science, Part A, 2021, 58(3):182⁃191. |
72 | XIA L, WANG Q, MENG J, et al. Thermal and electro‐induced shape‐memory Eucommia ulmoides gum composites filled with carbon nanotubes[J]. Polymers for Advanced Technologies, 2021. |
73 | NIYONZIMA I, JIAO Y, FISH J. Modeling and simulation of nonlinear electro⁃thermo⁃mechanical continua with application to shape memory polymeric medical devices [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 350(Jun.15):511⁃534. |
74 | WANG H Q, LUO H S, ZHOU X D, et al. Conductive multi⁃shape polymer composites towards stimuli sensing [J]. Materials Letters, 2017, 198(Jul.1):132⁃135. |
75 | UMAIR M M, ZHANG Y, ZHANG S, et al. A novel flexible phase change composite with electro⁃driven shape memory, energy conversion/storage and motion sensing properties [J]. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2019, 7(46):26 385⁃26 392. |
76 | YAO Y T, WEI H Q, WANG J J, et al. Fabrication of hybrid membrane of electro spun polycaprolactone and polyethylene oxide with shape memory property [J]. Composites, Part B. Engineering, 2015, 83B (Dec.):264⁃269. |
77 | SACHYANI KENETH E, SCALET G, LAYANI M, et al. Pre⁃programmed tri⁃layer electro⁃thermal actuators composed of shape memory polymer and carbon nanotubes[J]. Soft robotics, 2020, 7(2): 123⁃129. |
78 | LU H B, YAO Y T, YIN J Y, et al. Functionally graded carbon nanotube and nation/silica nanofiber for electrical actuation of carbon fiber reinforced shape memory polymer [J]. Pigment & Resin Technology, 2016, 45(2):93⁃98. |
79 | WANG Y K, WANG L C, ZHANG Y T, et al. Evaluating the effect of carbon black⁃a short carbon fiber hybrid filler on the electro⁃activated shape memory cyanate ester/epoxy composites[J]. Science of Advanced Materials, 2020, 12(5):652⁃658. |
80 | JAVED A, ASLAM K, MANAWWER A, et al. Electroactive shape memory property of a Cu⁃decorated CNT dispersed PLA/ESO nanocomposite [J]. Materials, 2015,8(9). |
81 | LU H B, HUANG W M. Synergistic effect of self⁃assembled carboxylic acid⁃functionalized carbon nanotubes and carbon fiber for improved electro⁃activated polymeric shape⁃memory nanocomposite [J]. Applied Physics Letters, 2013, 102(23):231910⁃1⁃231910⁃4. |
82 | XIAO Y, BAI D, XIE Z, et al. Flexible copper foam⁃based phase change materials with good stiffness⁃toughness balance, electro⁃to⁃thermal conversion ability and shape memory function for intelligent thermal management[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106420. |
83 | ARUN D I, KUMAR K S, SANTHOSHKUMAR B, et al. High Glass⁃transition polyurethane⁃carbon black electro⁃active shape memory nanocomposite for aerospace systems [J]. Materials Science and Technology: MST: A Publication of the Institute of Metals, 2019, 35(5/6):596⁃605. |
84 | WANG Y K, MA T R, TIAN W C, et al. Electroactive shape memory properties of graphene/epoxy⁃cyanate ester nanocomposites [J]. Pigment & Resin Technology, 2018, 47(1):72⁃78. |
85 | ROSALES C A G, DUARTE M F G, KIM H, et al. 3D Printing of Shape Memory Polymer (SMP)/Carbon Black (CB) Nanocomposites with Electro⁃Responsive Toughness Enhancement[J]. Materials Research Express, 2018, 5(6): 065704. |
86 | LI M Q, WU J M, SONG F, et al. Flexible and electro⁃induced shape memory Poly (Lactic Acid)⁃based Material Constructed by Inserting a Main⁃chain Liquid Crystalline and Selective Localization of Carbon Nanotubes[J]. Composites Science and Technology, 2019, 173: 1⁃6. |
87 | ZHOU H K, LUO H S, YAO Y R, et al. Low⁃voltage⁃triggered rapid shape memory actuation with interfacial self⁃assembled silver nanowires [J]. Materials Letters, 2019, 252(Oct.1):76⁃79. |
88 | ZHANG F H, XIA Y L, WANG L L, et al. Conductive shape memory microfiber membranes with core⁃shell structures and electroactive performance [J]. ACS Applied Materials & Interfaces, 2018, 10(41):35 526⁃35 532. |
89 | TAKALE A M, CHOUGULE N K. Effect of wire electro discharge machining process parameters on surface integrity of Ti49. 4Ni50. 6 shape memory alloy for orthopedic implant application[J]. Materials Science and Engineering: C, 2019, 97: 264⁃274. |
90 | ARUN D I, CHAKRAVARTHY P, GIRISHB S, et al. Experimental and monte carlo simulation studies on percolation behavior of a shape memory polyurethane carbon black nanocomposite [J]. Smart Materials and Structures, 2019, 28(5):055010 11pp). |
91 | REN D, CHEN Y J, LI H, et al. High⁃efficiency dual⁃responsive shape memory assisted self⁃healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites [J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2019,580. |
92 | LU H B, LIU Y, GOU J, et al. Synergistic effect of carbon nanofiber and carbon nano paper on shape memory polymer composite [J]. Applied Physics Letters, 2010, 96(8):084102⁃1⁃084102⁃3. |
93 | WANG E, WU Y, ISLAM M Z, et al. A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo⁃, electro⁃and light⁃responsive shape memory effect[J]. Materials Letters, 2019, 238: 54⁃57. |
94 | AN Y J, OKUZAKI H. Novel electro⁃active shape memory polymers for soft actuators[J]. Japanese Journal of Applied Physics, 2020, 59(6): 061002. |
[1] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[2] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[5] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[6] | 阮芳涛, 夏成龙, 张宝根, 曹叶, 刘志, 徐珍珍, 章劲草. 芳纶包覆碳纤维增强环氧树脂的轴向压缩性能研究[J]. 中国塑料, 2022, 36(4): 19-23. |
[7] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[8] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[9] | 何毅, 赵广慧. 复合材料增强修复油气管道的研究进展[J]. 中国塑料, 2022, 36(4): 70-82. |
[10] | 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181. |
[11] | 何明峰, 王珂, 王启扬, 杨肖, 郭红, 胡泊洋, 李保安. 聚偏氟乙烯/类基体基团修饰石墨烯导热复合材料研究[J]. 中国塑料, 2022, 36(2): 41-48. |
[12] | 李琪微, 王翠翠, 郑海军, 陈季荷, 王戈, 程海涛. 挤出循环对聚丙烯/竹粉复合材料力学及发泡性能的影响[J]. 中国塑料, 2022, 36(2): 56-60. |
[13] | 李波, 龚军, 金学义, 孟晓宇. 碳纳米管改性方法对聚酰胺11性能影响研究[J]. 中国塑料, 2022, 36(2): 61-66. |
[14] | 王启扬, 杨肖, 陈吉奂, 何悦星, 杨冬梅, 胡泊洋, 郭红, 李保安. 双隔离结构聚乙烯/石墨烯导热复合材料的研究[J]. 中国塑料, 2022, 36(1): 32-41. |
[15] | 朱能贵, 沈超, 李胜男, 曾祥补, 蒋团辉, 张翔. 聚丙烯/粉煤灰微发泡复合材料的制备及发泡性能研究[J]. 中国塑料, 2022, 36(1): 78-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||