
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (3): 167-176.DOI: 10.19491/j.issn.1001-9278.2022.03.025
• 综述 • 上一篇
黎玉山, 李杰
收稿日期:
2021-09-03
出版日期:
2022-03-26
发布日期:
2022-03-25
通讯作者:
李杰(1984—),男,副教授,从事摩擦学研究,lijie0739/btbu.edu.cn作者简介:
黎玉山(1998—),男,在读硕士研究生,从事PDMS功能材料方面的研究,1327822898/qq.com
LI Yushan, LI Jie
Received:
2021-09-03
Online:
2022-03-26
Published:
2022-03-25
Contact:
LI Jie
摘要:
概述了超疏水表面的浸润原理,着重介绍了基于聚二甲基硅氧烷(PDMS)的耐久性超疏水表面的开发制备工艺,以及其在不同领域内的应用进展。最后,对超疏水表面进行了总结与展望。
中图分类号:
黎玉山, 李杰. PDMS耐久性超疏水表面的研究进展[J]. 中国塑料, 2022, 36(3): 167-176.
LI Yushan, LI Jie. Research progress in durable super⁃hydrophobic surface based on PDMS[J]. China Plastics, 2022, 36(3): 167-176.
1 | DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature[J]. Materials Today, 2015, 18(5):273⁃285. |
2 | SHI X, DOU R, MA T, et al. Bioinspired lotus⁃like self⁃illuminous coating[J]. ACS Appl. Mater. Interfaces, 2015, 7(33):18 424⁃18 428. |
3 | NEINHUIS C, BARTHLOTT W. Characterization and distribution of water⁃repellent, self⁃cleaning plant surfaces[J]. Annals of Botany, 1997, 79(6):667⁃677. |
4 | ZHANG X, SHI F, NIU J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. J. Mater. Chem, 2008, 18(6):621⁃633. |
5 | ZHANG C, LIANG F, ZHANG W, et al. Constructing mechanochemical durable and self⁃healing superhydrophobic surfaces[J]. ACS Omega, 2020, 5(2):986⁃994. |
6 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40:546⁃551. |
7 | MOGHADAM S G, PARSIMEHR H, EHSANI A. Multifunctional superhydrophobic surfaces[J]. Advances in Colloid And Interface Science, 2021, 290:102397. |
8 | DAS A, SHOME A, MANNA U. Porous and reactive polymeric interfaces: an emerging avenue for achieving durable and functional bio⁃inspired wettability[J]. J Mater Chem:A, 2021, 9(2):824⁃856. |
9 | VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces[J]. Adv Mater, 2011, 23(5):673⁃678. |
10 | YOUNG T. An essay on the cohesion of fluids[C]. Phi⁃losophical Transactions of the Royal Society of London, 1805, 95:65⁃87. |
11 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988⁃994. |
12 | LANDEL J R, PEAUDECERF F J, TEMPRANO⁃COLETO F, et al. A theory for the slip and drag of superhydrophobic surfaces with surfactant[J]. J Fluid Mech, 2020, 883:A18. |
13 | KIM D, RYU S. How and when the cassie⁃baxter droplet starts to slide on textured surfaces[J]. Langmuir, 2020, 36(46):14 031⁃14 038. |
14 | AZADI TABAR M, BARZEGAR F, GHAZANFARI M H, et al. On the applicability range of cassie⁃baxter and wenzel equation: a numerical study[J]. J Braz Soc Mech Sci Eng, 2019, 41:399. |
15 | TUTEJA A, CHOI W, MABRY J M, et al. Robust omniphobic surfaces[J]. PNAS, 2008, 105(47):18 200⁃18 205. |
16 | HENSEL R, HELBIG R, ALAND S, et al. Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures[J]. Langmuir, 2013, 29(4):1 100⁃1 112. |
17 | HOU B, WU C, LI X, et al. Contact line⁃based model for the cassie⁃wenzel transition of a sessile droplet on the hydrophobic micropillar⁃structured surfaces[J]. Applied Surface Science, 2021, 542:148611. |
18 | CHEN J, CHEN J, LI L, et al. Droplet rolling angle model of micro⁃nanostructure superhydrophobic coating surface[J]. Eur Phys J E Soft Matter, 2021, 44(2):25. |
19 | LI H, YAN T, FICHTHORN K A. Influence of gravity on the sliding angle of water drops on nanopillared superhydrophobic surfaces[J]. Langmuir, 2020, 36(33):9 916⁃9 925. |
20 | YANG Y, LI X, ZHENG X, et al. 3D⁃printed biomimetic super⁃hydrophobic structure for microdroplet manipulation and oil/water separation[J]. Adv Mater, 2018, 30(9):1704912. |
21 | WANG D, SUN Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature, 2020, 582:55⁃59. |
22 | LI X, SHI T, LI B, et al. One⁃step preparation of super⁃hydrophobic micro⁃nano dendrites on Al alloy for enhanced corrosion resistance[J]. Metals, 2018, 8(11):10.3390/met8110960. |
23 | ATTHI N, SRIPUMKHAI W, PATTAMANG P, et al. Superhydrophobic property enhancement on guard ring micro⁃patterned PDMS with simple flame treatment[J]. Jpn J Appl Phys, 2020, 59:SIIJ05. |
24 | LIN C, HUANG Y, LI X, et al. Fabrication of superhydrophobic surfaces inspired by “stomata effect” of plant leaves via swelling⁃vesiculating⁃cracking method[J]. Chemical Engineering Journal, 2020, 400:125939. |
25 | XU C, SHI Z, WU Z, et al. Fabrication of superhydrophobic soot⁃like surface[C]// 2016 IEEE International Conference on. Chongqing: Manipulation, Manufacturing And Measurement on The Nanoscale(3M⁃NANO), 2016:400⁃403. |
26 | SUTAR R S, LATTHE S S, SARGAR A M, et al. Spray deposition of PDMS/candle soot NPs composite for self⁃cleaning superhydrophobic coating[J]. Macromol Symp, 2020, 393(1):2000031. |
27 | WU B, YE L, ZHANG Z, et al. Facile construction of robust super⁃hydrophobic coating for ureaformaldehyde foam: durable hydrophobicity and self⁃cleaning ability[J]. Composites Part A: Applied Science and Manufacturing, 2020, 132:105831. |
28 | OU J, WANG F, LI W, et al. Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric[J]. Progress in Organic Coatings, 2020, 146:105700. |
29 | HUANG J, WANG S, LYU S, et al. Preparation of a robust cellulose nanocrystal superhydrophobic coating for self⁃cleaning and oil⁃water separation only by spraying[J]. Ind Crop Prod, 2018, 122:438⁃447. |
30 | HUANG J, CAI P, LI M, et al. Preparation of CNF/PDMS superhydrophobic coatings with good abrasion resistance using a one⁃step spray method[J]. Materials, 2020, 13(23):5380. |
31 | LI D, WANG H, LIU Y, et al. Large⁃scale fabrication of durable and robust super⁃hydrophobic spray coatings with excellent repairable and anti⁃corrosion performance[J]. Chemical Engineering Journal, 2019, 367:169⁃179. |
32 | WANG P, WEI W, LI Z, et al. Superhydrophobic fluorinated PDMS composite for wearable strain sensor with excellent mechanical robustness and liquid impalement resistance[J]. J Mater Chem A, 2020, 8(6):3 509⁃3 516. |
33 | GE M, CAO C, LIANG F, et al. A “PDMS⁃In⁃Water” emulsion enables mechanochemically robust superhydrophobic surfaces with self⁃healing nature[J]. Nanoscale Horiz, 2020, 5(1):65⁃73. |
34 | XUE C, LI M, GUO X, et al. Fabrication of superhydrophobic textiles with high water pressure resistance[J]. Surface And Coatings Technology, 2017, 310:134⁃142. |
35 | HUANG Z, XU W, WANG Y, et al. One⁃step preparation of durable super⁃hydrophobic MSR/SiO2 coatings by suspension air spraying[J]. Micromachines, 2018, 9(12):677. |
36 | ZANG D, ZHU R, ZHANG W, et al. Corrosion⁃resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8):1605446. |
37 | BHARATHIDASAN T, SATHIYANARYANAN S. Self⁃replenishing superhydrophobic durable polymeric nanocomposite coatings for heat exchanger channels in thermal management applications[J]. Progress in Organic Coatings, 2020, 148:105828. |
38 | NIKOSOKHAN R, NOROUZBEIGI R, VELAYI E. Preparation of Co3O4 self⁃cleaning nanocoatings: investigation of ZnO seeded steel meshes[J]. Surfaces And Interfaces, 2021, 23:100912. |
39 | PAN T, LIU J, DENG N, et al. ZnO nanowires/PVDF nanofiber membrane with superhydrophobicity for enhanced anti⁃wetting and anti⁃scaling properties in membrane distillation[J]. Journal of Membrane Science, 2021, 621:118877. |
40 | HU J, ZHANG M, HE Y, et al. Fabrication and potential applications of highly durable superhydrophobic polyethylene terephthalate fabrics produced by in⁃situ zinc oxi⁃de (ZnO) nanowires deposition and polydimethylsiloxane (PDMS) packaging[J]. Polymers, 2020, 12(10): 10.3390/polym12102333. |
41 | WEI C, JIN B, ZHANG Q, et al. Anti⁃icing performance of super⁃wetting surfaces from icingresistance to ice⁃phobic aspects: robust hydrophobic or slippery surfaces[J]. Journal of Alloys and Compounds, 2018, 765:721⁃730. |
42 | DONG Z, SCHUMANN M F, HOKKANEN M J, et al. Superoleophobic slippery lubricant⁃infused surfaces: combining two extremes in the same surface[J]. Adv Mater, 2018, 30(45):1803890. |
43 | TONG W, XIONG D, WANG N, et al. Green and timesaving fabrication of a superhydrophobic surface and its application to anti⁃icing, self⁃cleaning and oil⁃water separation[J]. Surface and Coatings Technology, 2018, 352:609⁃618. |
44 | JIA L, SUN J, LI X, et al. Preparation and anti⁃frost performance of PDMS⁃SiO2/SS superhydrophobic coating[J]. Coatings, 2020, 10(11): 10.3390/coatings 10111051. |
45 | WU Y, SHEN Y, TAO J, et al. Facile spraying fabrication of highly flexible and mechanically robust superhydrophobic F⁃SiO2/PDMS coatings for self⁃cleaning and drag⁃reduction applications[J]. New Journal of Chemistry, 2018, 42(22):18 208⁃18 216. |
46 | SHEN Y, WU Y, TAO J, et al. Spraying fabrication of durable and transparent coatings for antiicing application: dynamic water repellency, icing delay, and ice adhesion[J]. ACS Appl Mater Interfaces, 2019, 11(3):3 590⁃3 598. |
47 | SUN Y, SUI X, WANG Y, et al. Passive anti⁃icing and active electrothermal deicing system based on an ultraflexible carbon nanowire (cnw)/pdms biomimetic nanocomposite with a superhydrophobic microcolumn surface[J]. Langmuir, 2020, 36(48):14 483⁃14 494. |
48 | XIE J, ZHANG J, ZHANG H, et al. Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds[J]. Research on Chemical Intermediates, 2020, 46:4 297⁃4 309. |
49 | NIU H, QIANG Z, REN J. Durable, magnetic⁃responsive melamine sponge composite for high efficiency, in situ oil⁃water separation [J]. Nanotechnology, 2021, 32(27):275705. |
50 | HE S, ZHAN Y, BAI Y, et al. Gravity⁃driven and high flux super⁃hydrophobic/super⁃oleophilic poly(arylene ether nitrile) nanofibrous composite membranes for efficient water⁃in⁃oil emulsions separation in harsh environments[J]. Composites Part B: Engineering, 2019, 177:107439. |
51 | HE S, ZHAN Y, ZHAO S, et al. Design of stable super⁃hydrophobic/super⁃oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: facial strategy, magnetic drive and continuous oil/water separation in harsh environments[J]. Applied Surface Science, 2019, 494:1 072⁃1 082. |
52 | TALEBIZADEHSARDARIA P, SEYFIC J, HEJAZIC I, et al. Enhanced chemical and mechanical durability of superhydrophobic and superoleophilic nanocomposite coa⁃tings on cotton fabric for reusable oil/water separation applications[J]. Colloids And Surfaces A: Physicochemical and Engineering Aspects, 2020, 603:125204. |
53 | SOSA M D, CANNEVA A, KAPLAN A, et al. From superhydrophilic to superhydrophobic polymer⁃nanoparticles coated meshes for water⁃oil separation systems with resistance to hard water[J]. Journal of Petroleum Science and Engineering, 2020, 194:107513. |
54 | RUAN X, XU T, CHEN D, et al. Superhydrophobic paper with mussel⁃inspired polydimethylsiloxane⁃silica nanoparticle coatings for effective oil/water separation[J]. RSC Adv, 2020, 10(14):8 008⁃8 015. |
55 | PADILLA⁃HERNÁNDEZ R E, MEDINA⁃RAMIREZ A, AVILA⁃ORTEGA A, et al. Synthesis of hybrid polymeric fibers of different functionalized alkoxysilane coupling agents obtained via sol⁃gel and electrospinning technique: effect on the morphology by addition of PVA[J]. Journal of Sol⁃Gel Science and Technology, 2021, 99:25⁃38. |
56 | PERWEEN S, KHAN Z, SINGH S, et al. PVA⁃PDMS⁃stearic acid composite nanofibrous mats with improved mechanical behavior for selective filtering applications[J]. Scientific Reports, 2018, 8:16038. |
57 | ZHAI G, QI L, HE W, et al. Durable super⁃hydrophobic PDMS/SiO2/WS2 sponge for efficient oil/water separation in complex marine environment[J]. Environmental Pollution, 2021, 269:116118. |
58 | WANG Y, ZHOU L, LUO X, et al. Solar⁃heated graphene sponge for high⁃efficiency clean⁃up of viscous crude oil spill[J]. Journal of Cleaner Production, 2019, 230:995⁃1 002. |
59 | WU X, LEI Y, LI S, et al. Photothermal and joule hea⁃ting⁃assisted thermal management sponge for efficient cleanup of highly viscous crude oil[J]. Journal of Hazardous Materials, 2021, 403:124090. |
60 | NIU H, LI J, WANG X, et al. Solar⁃assisted, fast, and in situ recovery of crude oil spill by a superhydrophobic and photothermal sponge[J]. ACS Appl. Mater. Interfaces, 2021, 13(18):21 175⁃21 185. |
61 | ZHU T, CHENG Y, HUANG J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti⁃icing, photocatalysis and self⁃cleaning[J]. Chemical Engineering Journal, 2020, 399:125746. |
62 | ZHANG L, XUE C, CAO M, et al. Highly transparent fluorine⁃free superhydrophobic silica nanotube coatings[J]. Chemical Engineering Journal, 2017, 320:244⁃252. |
63 | LI X, GAO Z, LI B, et al. Self⁃healing superhydrophobic conductive coatings for self⁃cleaning and humidity⁃insensitive hydrogen sensors[J]. Chemical Engineering Journal, 2021, 410:128353. |
66 | GAO Z, SONG G, ZHANG X, et al. A facile pdms coating approach to room⁃temperature gas sensors with high humidity resistance and long⁃term stability[J]. Sensors and Actuators: B. Chemical, 2020, 325:128810. |
65 | LIN Y, LIU S, CHEN S, et al. Highly stretchable and sensitive strain sensor based on grapheneelastomer composites with a novel double⁃interconnected network[J]. J Mater Chem C, 2016, 4:6 345⁃6 352. |
66 | CHEN Y, WANG L, WU Z, et al. Super⁃hydrophobic, durable and cost⁃effective carbon black/rubber composites for high performance strain sensors[J]. Composites Part B, 2019, 176:107358. |
67 | LIU G, XIA H, NIU Y, et al. Fabrication of self⁃clea⁃ning photocatalytic durable building coating based on WO3⁃TNs/PDMS and NO degradation performance[J]. Chemi⁃cal Engineering Journal, 2021, 409:128187. |
68 | MOGHADAS H, SAIDI M S, KASHANINEJAD N, et al. Fabrication and characterization of low⁃cost, bead⁃free, durable and hydrophobic electrospun membrane for 3d cell culture[J]. Biomed Microdevices, 2017,19(4):74. |
69 | LIU Y, PAN J, ZHANG G, et al. Stable and ultrasensitive analysis of organic pollutants and heavy metals by dried droplet method with superhydrophobic⁃induced enrichment[J]. Analytica Chimica Acta, 2021, 1151:338253. |
70 | STACEY N T, HADJITHEODOROU A, GLASSER D. Gasoline preblending for energy⁃efficient bioethanol recovery[J]. Energy Fuels, 2016, 30(10):8 286⁃8 291. |
71 | KAMELIAN F S, MOHAMMADI T, FASTNAEIMPOOR F, Facile and scalable fabrication of novel microporous silicalite⁃ 1 /PDMS mixed matrix membranes for efficient ethanol separation by pervaporation[J]. Separation And Purification Technology, 2019,229:115820. |
72 | KAMELIAN F S, MOHAMMADI T, NAEIMPOOR F, et al. One⁃step and low⁃cost designing of two⁃layered active⁃layer superhydrophobic silicalite⁃1/PDMS membrane for simultaneously achieving superior bioethanol pervaporation and fouling/biofouling resistance[J]. ACS Appl Mater Interfaces, 2020, 12(50):56 587⁃56 603. |
[1] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[2] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[3] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[4] | 董少策, 李承高, 张旭锋, 咸贵军. 植物纤维纸蜂窝制备的环境影响评价[J]. 中国塑料, 2022, 36(6): 108-115. |
[5] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[6] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[7] | 董露茜, 徐芳, 翁云宣. 聚乙醇酸改性及其应用研究进展[J]. 中国塑料, 2022, 36(4): 166-174. |
[8] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[9] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[10] | 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181. |
[11] | 仇洪波. 基于仿生学的木材超疏水表面改性研究进展[J]. 中国塑料, 2022, 36(2): 182-196. |
[12] | 张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165. |
[13] | 刁晓倩, 翁云宣, 付烨, 周迎鑫. 生物降解塑料应用及性能评价方法综述[J]. 中国塑料, 2021, 35(8): 152-161. |
[14] | 赵艳, 潘祥, 刘本刚. 可发性聚苯乙烯土工泡沫的性能及应用[J]. 中国塑料, 2021, 35(5): 97-106. |
[15] | 张一辉, 王从龙, 陈士宏, 王向东. 聚醚酰亚胺发泡技术研究进展[J]. 中国塑料, 2021, 35(4): 124-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||