中国塑料 ›› 2025, Vol. 39 ›› Issue (10): 39-48.DOI: 10.19491/j.issn.1001-9278.2025.10.008

• 材料与性能 • 上一篇    下一篇

工艺参数与纳米SiO2含量对MIM成型聚合物产品泡孔结构及力学性能影响

陈飞1, 李昊东1, 喻敏1, 滑海涛1, 李青洲1, 董春法1, 徐磊1, 汪智勇2,3, 贺武清4, 于盛睿1()   

  1. 1.景德镇陶瓷大学机械电子工程学院,江西 景德镇 333403
    2.中国科学院深圳先进技术研究院,广东 深圳 518055
    3.中国科学院大学,北京 100049
    4.群达塑胶电子(深圳)有限公司,广东 深圳 430074
  • 收稿日期:2024-11-15 出版日期:2025-10-26 发布日期:2025-10-21
  • 通讯作者: 于盛睿(1976—)男, 博士, 教授, 从事聚合物先进成型与创新设计、模具设计等领域研究工作, ysr.hotdog@163.com
    E-mail:ysr.hotdog@163.com
  • 基金资助:
    国家自然科学基金项目(52565037);国家自然科学基金项目(52065029);国家自然科学基金项目(51741505);江西省自然科学基金项目(20212ACB204013);江西省自然科学基金项目(20202BABL204038);景德镇陶瓷大学大学生创新创业训练计划项目(S202310408036)

Effects of process parameters and nano⁃SiO2 content on cellular structure and mechanical properties of MIM polymer products

CHEN Fei1, LI Haodong1, YU Min1, HUA Haitao1, LI Qingzhou1, DONG Chunfa1, XU Lei1, WANG Zhiyong2,3, HE Wuqing4, YU Shengrui1()   

  1. 1.School of Mechanical and Electronic Engineering,Jingdezhen Ceramic University,Jingdezhen 333403,China
    2.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
    4.Kunda Plastic Electronics (Shenzhen) Co,Ltd,Shenzhen 518018,China
  • Received:2024-11-15 Online:2025-10-26 Published:2025-10-21
  • Contact: YU Shengrui E-mail:ysr.hotdog@163.com

摘要:

为制取泡孔致密均匀、力学性能优良的微孔发泡注射成型(MIM)制品,本文基于正交试验设计方法,综合应用单因素分析法与对比试验,以典型样条为试验对象,研究熔体温度、注射速度、超临界流体(SCF)浓度、注射压力与纳米二氧化硅(SiO2)含量对泡孔结构与力学性能影响,利用矩阵分析法以泡孔直径、泡孔密度、拉伸强度、弯曲强度为评价指标进行多指标优化分析。结果表明,SCF浓度对泡孔结构影响最大,其增大可使泡孔直径减小、泡孔密度上升;注射速度对力学性能影响最大,其增大导致拉伸强度先减小再增大,弯曲强度逐渐下降。采用综合评价的最优工艺参数组合,其泡孔直径36.82 μm、泡孔密度1.40×106 个/cm3、拉伸强度19.69 MPa、弯曲强度36.49 MPa,较优化前分别提升79.27 %、8 135.29 %、39.94 %、12.87 %;较正交试验的最佳结果亦分别提升1.47 %、3.70 %、3.09 %、0.69 %。

关键词: 泡孔结构, 力学性能, 纳米二氧化硅, 工艺优化, 多指标优化

Abstract:

This study aims to optimize the microcellular injection molding (MIM) process for producing polymer components with uniform cell structure and enhanced mechanical properties. Using a combination of single⁃factor and orthogonal experimental designs, the effects of melt temperature, injection velocity, supercritical fluid (SCF) concentration, injection pressure, and nano-silica (SiO₂) content on cellular morphology and mechanical performance were systematically investigated. Matrix analysis was employed for multi⁃objective optimization based on cell diameter, cell density, tensile strength, and flexural strength. Results show that SCF concentration most significantly affects cellular structure, reducing cell diameter and increasing cell density with increasing concentration. Injection velocity has the greatest impact on mechanical properties, causing tensile strength to first decrease and then increase, while flexural strength decreases monotonically. The optimized process yields components with a cell diameter of 36.82 μm, cell density of 1.40×10⁶ cells/cm³, tensile strength of 19.69 MPa, and flexural strength of 36.49 MPa. These represent a 79.27 % reduction in cell diameter, an 8 135.29 % increase in cell density, and improvements of 39.94% in tensile strength and 12.87 % in flexural strength over pre⁃optimized values. Furthermore, all four metrics are enhanced by 1.47 %, 3.70 %, 3.09 %, and 0.69 %, respectively, compared to the best orthogonal experimental result.

Key words: cellular structure, mechanical property, nano?SiO2, process optimization, multi?criteria analysis

中图分类号: