
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (5): 1-8.DOI: 10.19491/j.issn.1001-9278.2025.05.001
• 材料与性能 • 下一篇
吴希然1,2(), 贾志欣2(
), 刘立君2, 李继强2, 赵川涛1,2, 陈博杰3
收稿日期:
2024-07-10
出版日期:
2025-05-26
发布日期:
2025-04-26
通讯作者:
贾志欣(1970—),女,教授,从事复合材料成型工艺优化、模具技术、模具表面激光强化研究,jzx@nit.zju.edu.cn作者简介:
吴希然(2000—),男,研究生,从事复合材料热压⁃注塑一体成型工艺研究,22225153@zju.edu.cn.
基金资助:
WU Xiran1,2(), JIA Zhixin2(
), LIU Lijun2, LI Jiqiang2, ZHAO Chuantao1,2, CHEN Bojie3
Received:
2024-07-10
Online:
2025-05-26
Published:
2025-04-26
Contact:
JIA Zhixin
E-mail:22225153@zju.edu.cn;jzx@nit.zju.edu.cn
摘要:
采用玻璃纤维增强聚丙烯制备热压⁃注塑一体成型制品,通过正交实验分析影响拉伸强度和弯曲强度的显著性因素,分析工艺参数对制品力学性能的影响;研究了不同工艺参数下的拉伸和弯曲失效模式,并对失效断面进行微观形貌观察,建立了成型工艺参数、微观结构及制品力学性能之间的关系。结果表明,影响制品拉伸强度的显著性因素为预热温度、保压压力、模具温度,影响制品弯曲强度的显著性因素是预热温度、熔体温度、保压压力,制品有机片材与注塑材料的结合强度和有机片材纤维⁃树脂结合程度是影响制品力学性能的主要因素。
中图分类号:
吴希然, 贾志欣, 刘立君, 李继强, 赵川涛, 陈博杰. PP⁃CGFR/PP⁃LGFR热压⁃注塑一体成型制品力学性能分析[J]. 中国塑料, 2025, 39(5): 1-8.
WU Xiran, JIA Zhixin, LIU Lijun, LI Jiqiang, ZHAO Chuantao, CHEN Bojie. Analysis of mechanical properties of PP⁃CGFR/PP⁃LGFR⁃integrated over⁃molding products[J]. China Plastics, 2025, 39(5): 1-8.
实验编号 | 工艺参数组合 | ||||
---|---|---|---|---|---|
1 | A1B1C1D1E1 | 132.03 | 165.40 | 16.74 | 21.41 |
2 | A4B1C2D5E5 | 196.62 | 268.52 | 22.75 | 26.32 |
3 | A5B1C4D3E3 | 173.77 | 282.53 | 19.21 | 38.12 |
4 | A3B1C5D2E2 | 157.41 | 198.33 | 22.54 | 27.14 |
5 | A2B1C3D4E4 | 134.51 | 169.70 | 14.32 | 22.12 |
6 | A5B2C2D2E4 | 181.30 | 251.27 | 28.97 | 26.10 |
7 | A4B2C5D4E1 | 139.19 | 253.25 | 26.12 | 46.12 |
8 | A2B2C1D3E5 | 158.99 | 172.04 | 15.21 | 32.12 |
9 | A1B2C4D5E2 | 161.18 | 177.14 | 29.41 | 43.21 |
10 | A3B2C3D1E3 | 132.30 | 166.28 | 22.12 | 26.78 |
11 | A1B3C2D4E3 | 167.19 | 172.06 | 20.41 | 33.12 |
12 | A5B3C5D1E5 | 200.13 | 236.47 | 31.54 | 19.54 |
13 | A4B3C3D3E2 | 163.13 | 212.62 | 23.58 | 21.12 |
14 | A2B3C4D2E1 | 146.11 | 200.98 | 38.62 | 31.24 |
15 | A3B3C1D5E4 | 165.59 | 192.28 | 26.94 | 25.98 |
16 | A1B4C5D3E4 | 150.24 | 162.45 | 18.42 | 13.12 |
17 | A5B4C3D5E1 | 163.09 | 238.15 | 24.65 | 24.12 |
18 | A3B4C4D4E5 | 168.75 | 184.62 | 19.54 | 36.12 |
19 | A4B4C1D2E3 | 170.67 | 279.34 | 32.41 | 47.81 |
20 | A2B4C2D1E2 | 144.54 | 162.95 | 23.35 | 24.35 |
21 | A2B5C5D5E3 | 173.37 | 220.12 | 42.32 | 18.45 |
22 | A3B5C2D3E1 | 161.23 | 217.08 | 13.54 | 11.02 |
23 | A1B5C3D2E5 | 165.44 | 160.27 | 23.57 | 20.13 |
24 | A4B5C4D1E4 | 176.29 | 272.13 | 24.21 | 21.86 |
25 | A5B5C1D4E2 | 201.30 | 227.64 | 27.64 | 29.64 |
实验编号 | 工艺参数组合 | ||||
---|---|---|---|---|---|
1 | A1B1C1D1E1 | 132.03 | 165.40 | 16.74 | 21.41 |
2 | A4B1C2D5E5 | 196.62 | 268.52 | 22.75 | 26.32 |
3 | A5B1C4D3E3 | 173.77 | 282.53 | 19.21 | 38.12 |
4 | A3B1C5D2E2 | 157.41 | 198.33 | 22.54 | 27.14 |
5 | A2B1C3D4E4 | 134.51 | 169.70 | 14.32 | 22.12 |
6 | A5B2C2D2E4 | 181.30 | 251.27 | 28.97 | 26.10 |
7 | A4B2C5D4E1 | 139.19 | 253.25 | 26.12 | 46.12 |
8 | A2B2C1D3E5 | 158.99 | 172.04 | 15.21 | 32.12 |
9 | A1B2C4D5E2 | 161.18 | 177.14 | 29.41 | 43.21 |
10 | A3B2C3D1E3 | 132.30 | 166.28 | 22.12 | 26.78 |
11 | A1B3C2D4E3 | 167.19 | 172.06 | 20.41 | 33.12 |
12 | A5B3C5D1E5 | 200.13 | 236.47 | 31.54 | 19.54 |
13 | A4B3C3D3E2 | 163.13 | 212.62 | 23.58 | 21.12 |
14 | A2B3C4D2E1 | 146.11 | 200.98 | 38.62 | 31.24 |
15 | A3B3C1D5E4 | 165.59 | 192.28 | 26.94 | 25.98 |
16 | A1B4C5D3E4 | 150.24 | 162.45 | 18.42 | 13.12 |
17 | A5B4C3D5E1 | 163.09 | 238.15 | 24.65 | 24.12 |
18 | A3B4C4D4E5 | 168.75 | 184.62 | 19.54 | 36.12 |
19 | A4B4C1D2E3 | 170.67 | 279.34 | 32.41 | 47.81 |
20 | A2B4C2D1E2 | 144.54 | 162.95 | 23.35 | 24.35 |
21 | A2B5C5D5E3 | 173.37 | 220.12 | 42.32 | 18.45 |
22 | A3B5C2D3E1 | 161.23 | 217.08 | 13.54 | 11.02 |
23 | A1B5C3D2E5 | 165.44 | 160.27 | 23.57 | 20.13 |
24 | A4B5C4D1E4 | 176.29 | 272.13 | 24.21 | 21.86 |
25 | A5B5C1D4E2 | 201.30 | 227.64 | 27.64 | 29.64 |
因素 | 拉伸强度 | 弯曲强度 | ||||
---|---|---|---|---|---|---|
自由度 | 均方 | 显著性 | 自由度 | 均方 | 显著性 | |
误差 | 4 | 52.755 | — | 4 | 86.101 | — |
预热温度 | 4 | 878.916 | 0.009 | 4 | 7 962.841 | 0 |
模具温度 | 4 | 357.496 | 0.045 | 4 | 304.300 | 0.124 |
熔体温度 | 4 | 240.080 | 0.086 | 4 | 811.015 | 0.026 |
注射速度 | 4 | 149.333 | 0.169 | 4 | 388.325 | 0.087 |
保压压力 | 4 | 559.510 | 0.021 | 4 | 571.796 | 0.047 |
因素 | 拉伸强度 | 弯曲强度 | ||||
---|---|---|---|---|---|---|
自由度 | 均方 | 显著性 | 自由度 | 均方 | 显著性 | |
误差 | 4 | 52.755 | — | 4 | 86.101 | — |
预热温度 | 4 | 878.916 | 0.009 | 4 | 7 962.841 | 0 |
模具温度 | 4 | 357.496 | 0.045 | 4 | 304.300 | 0.124 |
熔体温度 | 4 | 240.080 | 0.086 | 4 | 811.015 | 0.026 |
注射速度 | 4 | 149.333 | 0.169 | 4 | 388.325 | 0.087 |
保压压力 | 4 | 559.510 | 0.021 | 4 | 571.796 | 0.047 |
1 | Gliszczyński A, Kubiak T. Load⁃carrying capacity of thin⁃walled composite beams subjected to pure bending[J]. Thin⁃Walled Structures, 2017, 115:76⁃85. |
2 | Czechowski L, Gliszczyński A, Bieniaś J, et al. Failure of GFRP channel section beams subjected to bending⁃numerical and experimental investigations[J]. Composites Part B: Engineering, 2017, 111:112⁃123. |
3 | Hwang M Y, Kang L. Characteristics and fabrication of piezoelectric GFRP using smart resin prepreg for detecting impact signals[J]. Composites Science and Technology, 2018,167:224⁃233. |
4 | Bourban P, Bögli A, Bonjour F, et al. Integrated processing of thermoplastic composites[J].Composites Science and Technology, 1998,58(5):633–637. |
5 | Shroff S, Acar E, Kassapoglou C.Design, analysis, fabrication, and testing of composite grid⁃stiffened panels for aircraft structures[J].Thin⁃Walled Struct,2017,119:235–246. |
6 | Akkerman R, Bouwman M, Wijskamp S. Analysis of the thermoplastic composite overmolding process: Interface strength[J]. Frontiers in Materials, 2020,7:27. |
7 | Sauer B B, Kampert W G, Wakeman M D, et al. Screening method for the onset of bonding of molten polyamide resin layers to continuous fiber reinforced laminate sheets[J]. Composites Science and Technology, 2016,129:166⁃172. |
8 | Rossa⁃Sierra A, Sánchez⁃Soto M, Illescas S, et al. Study of the interface behaviour between MABS/TPU bi⁃layer structures obtained through over moulding[J]. Materials & Design, 2009,30(10):3 979⁃3 988. |
9 | Giusti R, Lucchetta G. Analysis of the welding strength in hybrid polypropylene composites as a function of the forming and overmolding parameters[J]. Polymer Engineering & Science, 2018,58(4):592⁃600. |
10 | Wis A A, Kodal M, Ozturk S, et al. Overmolded polylactide/jute⁃mat eco⁃composites: A new method to enhance the properties of natural fiber biodegradable composites[J]. Journal of Applied Polymer Science, 2020,137(20):48692. |
11 | Mao Q, Hong Y, Wyatt T P, et al. Insert injection molding of polypropylene single⁃polymer composites[J]. Composites Science and Technology, 2015,106:47⁃54. |
12 | Wang J, Chen D, Wang S, et al. Insert injection molding of low⁃density polyethylene single⁃polymer composites reinforced with ultrahigh⁃molecular⁃weight polyethylene fabric[J]. Journal of Thermoplastic Composite Materials, 2018,31(8):1 013⁃1 028. |
13 | Bariani P F, Bruschi S, Ghiotti A, et al. An approach to modelling the forming process of sheet metal⁃polymer composites[J]. CIRP Annals, 2007,56(1):261⁃264. |
14 | Fiorotto M, Lucchetta G. Experimental investigation of a new hybrid molding process to manufacture high⁃performance composites[J]. International Journal of Material Forming, 2013,6(1):179⁃185. |
15 | Paramasivam A, Timmaraju M V, Velmurugan R. Influence of preheating on the fracture behavior of over⁃molded short/continuous fiber reinforced polypropylene composites[J]. Journal of composite materials, 2021,55(29):4 387⁃4 397. |
16 | 符亮, 蒋炳炎, 吴旺青, 等. 玻纤增强聚丙烯与尼龙66模内混合加工成型实验研究[J]. 中南大学学报(自然科学版), 2019,50(5):1 075⁃1 081. |
FU L, JIANG B Y, WU W Q,et al. Experimental research on in⁃mold hybrid molding of glass fiber reinforced polypropylene and nylon66[J]. Journal of Central South University:Science and Technology, 2019,50(5):1 075⁃1 081. | |
17 | Kim D, Kim H, Kim H. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015,131:742⁃752. |
18 | Paramasivam A, Mallina V T, Ramachandran V, et al. Effect of interface temperature on low⁃velocity impact response of injection over⁃molded short/continuous fiber reinforced polypropylene composites[J]. Polymer Composites, 2024,45(2):1 165⁃1 177. |
[1] | 张箭飞, 包璐璐, 杨廷杰, 李亮. 煤基高流动抗冲共聚聚丙烯的工业开发[J]. 中国塑料, 2025, 39(4): 41-45. |
[2] | 李静, 肖东, 何雨, 代在波. 改性回收PP塑料颗粒对混凝土切口梁弯曲性能影响[J]. 中国塑料, 2025, 39(4): 92-96. |
[3] | 陈茜, 王湘, 姜超, 高达利. 马来酸酐接枝聚丙烯的研究进展及应用[J]. 中国塑料, 2025, 39(3): 102-108. |
[4] | 张衡, 刘浩, 邱守季, 张炳, 吴叔青. 具有优异力学性能的钛白粉增白GFRPA复合材料的制备及性能研究[J]. 中国塑料, 2025, 39(3): 12-18. |
[5] | 杨青林, 周松, 李璨然, 余闻达, 罗玉梅. SEBS⁃g⁃MAH对PPO/PA66复合材料性能和形貌的影响[J]. 中国塑料, 2025, 39(3): 30-35. |
[6] | 张勋, 刘翔, 方梅, 郭攀, 冯跃战, 黄明, 刘春太. 基于动态高分子基复合材料的一体化T型加筋壁板力学性能仿真研究[J]. 中国塑料, 2025, 39(3): 53-59. |
[7] | 钟升辉, 王耀华, 吴燕敏, 马晶芬, 阮玉林, 胡准. 红外光谱法测定聚丙烯中抗氧剂3114的含量[J]. 中国塑料, 2025, 39(3): 86-89. |
[8] | 张辉, 唐站站, 鲍海霞, 程鑫远, 陈斌. 不同环境温度下UPVC管材的力学性能退化研究[J]. 中国塑料, 2025, 39(2): 26-31. |
[9] | 许巍, 吕明福, 杜文杰, 郭鹏, 徐耀辉. 双螺杆反应挤出长支链接枝对宽分子量分布聚丙烯性能的影响[J]. 中国塑料, 2025, 39(2): 6-11. |
[10] | 丁雯. 磷基⁃水性聚氨酯阻燃剂的制备及对棉织物的涂层[J]. 中国塑料, 2025, 39(2): 82-85. |
[11] | 黄起中. 磷酸酯盐类成核剂对煤基抗冲共聚聚丙烯K8708结晶和力学性能的影响研究[J]. 中国塑料, 2025, 39(1): 19-24. |
[12] | 高成涛, 胥秋, 张黎, 李剑, 黄维, 陈劲松, 刘楠, 何声宝, 陈思瑶, 潘首慧. 无机纳米粒子在可生物降解复合材料中的应用进展[J]. 中国塑料, 2025, 39(1): 85-91. |
[13] | 马建心, 王国梁, 杜中杰, 王武聪, 金华, 邹威, 王洪, 张晨. 羟基官能化ACR的制备及其在PBT改性中的应用研究[J]. 中国塑料, 2024, 38(9): 14-19. |
[14] | 曲道鹏, 张涛, 华晨曦, 宋欣雨, 程昌利, 刘禹, 王震宇. 高强电磁屏蔽环氧复合材料的3D打印工艺研究[J]. 中国塑料, 2024, 38(9): 24-29. |
[15] | 刘刚, 姚成, 贾磊, 陈喜鹏, 蔡汉生. 电容膜料聚丙烯热拉伸过程中结构演变研究[J]. 中国塑料, 2024, 38(9): 36-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||