
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (1): 85-91.DOI: 10.19491/j.issn.1001-9278.2025.01.014
高成涛1, 胥秋1, 张黎1, 李剑1, 黄维2, 陈劲松2, 刘楠3, 何声宝3(), 陈思瑶4, 潘首慧4(
)
收稿日期:
2024-04-22
出版日期:
2025-01-26
发布日期:
2025-02-14
通讯作者:
何声宝(1984-)高级工程师,硕士,研究方向为烟草检验分析,272234895@qq.com基金资助:
GAO Chengtao1, XU Qiu1, ZHANG Li1, LI Jian1, HUANG Wei2, CHEN Jinsong2, LIU Nan3, HE Shengbao3(), CHEN Siyao4, PAN Shouhui4(
)
Received:
2024-04-22
Online:
2025-01-26
Published:
2025-02-14
Contact:
HE Shengbao, PAN Shouhui
E-mail:272234895@qq.com;543971526@qq.com
摘要:
无机纳米粒子因其独特的光、电、热特性以及低毒、低成本、环境友好性和生物稳定性等一系列优良性质,在众多领域得到了广泛关注,针对无机纳米粒子填充制备可生物降解复合材料的优异性能和广阔应用前景,本文综述了无机金属及无机非金属两类无机纳米粒子在可生物降解复合材料中的应用研究进展,阐明了其在可生物降解复合材料中的作用机理机制,并对进一步的重点研究方向进行了展望。
中图分类号:
高成涛, 胥秋, 张黎, 李剑, 黄维, 陈劲松, 刘楠, 何声宝, 陈思瑶, 潘首慧. 无机纳米粒子在可生物降解复合材料中的应用进展[J]. 中国塑料, 2025, 39(1): 85-91.
GAO Chengtao, XU Qiu, ZHANG Li, LI Jian, HUANG Wei, CHEN Jinsong, LIU Nan, HE Shengbao, CHEN Siyao, PAN Shouhui. Advancements in application of inorganic nanoparticles in biodegradable composites[J]. China Plastics, 2025, 39(1): 85-91.
类别 | 无机纳米粒子 | 应用 |
---|---|---|
硅 | 介孔二氧化硅 | 药物载体[ |
人工骨移植[ | ||
碳 | 富勒烯 | 光热治疗[ |
碳纳米管 | 药物载体[ | |
石墨烯 | 药物或基因载体[ | |
纳米金刚石 | 药物载体[ | |
介孔碳 | 药物载体[ | |
金属 | 磁性氧化铁 | 造影剂[ |
生物传感器[ | ||
钛 | 接缝修复[ | |
银 | 抗菌[ | |
金 | 生物分析[ | |
镍 | 药物载体[ | |
二氧化铈 | 生物分析、给药[ | |
纳米羟基磷灰石 | 骨修复[ | |
层状双金属氢氧化物 | 药物载体[ |
类别 | 无机纳米粒子 | 应用 |
---|---|---|
硅 | 介孔二氧化硅 | 药物载体[ |
人工骨移植[ | ||
碳 | 富勒烯 | 光热治疗[ |
碳纳米管 | 药物载体[ | |
石墨烯 | 药物或基因载体[ | |
纳米金刚石 | 药物载体[ | |
介孔碳 | 药物载体[ | |
金属 | 磁性氧化铁 | 造影剂[ |
生物传感器[ | ||
钛 | 接缝修复[ | |
银 | 抗菌[ | |
金 | 生物分析[ | |
镍 | 药物载体[ | |
二氧化铈 | 生物分析、给药[ | |
纳米羟基磷灰石 | 骨修复[ | |
层状双金属氢氧化物 | 药物载体[ |
1 | CAI W, CHEN H, LIN J, et al. Inorganic nanoparticles⁃modified polyvinyl chloride separation membrane and enhanced anti⁃fouling performance[J]. Surfaces and Interfaces, 2023, 38: 102885. |
2 | 傅 敏. 基于有机物—无机纳米粒子复合构建木材超疏水表面及其性能研究[D].哈尔滨:东北林业大学,2024. |
3 | 高 凡. 金属离子配位的聚多巴胺纳米粒子及其抗肿瘤应用研究[D].西安:西安石油大学,2023. |
4 | 孙 岩.钽颗粒的免疫学效应及在组织工程骨膜中的应用研究[D].长沙:中南大学,2023. |
5 | SAHOO J K, HASTURK O, FALCUCCI T, et al. Silk chemistry and biomedical material designs[J]. Nature Reviews Chemistry, 2023, 7(5): 302⁃318. |
6 | LI Y, CUI C B, Li Y Z, et al. Biodegradable biomaterial arterial stent in the treatment of coronary heart disease[J]. Journal of Biomedical Nanotechnology, 2022, 18(1): 288⁃292. |
7 | KOMATSU N. Poly (glycerol)⁃based biomedical nanodevices constructed by functional programming on inorganic nanoparticles for cancer nanomedicine[J]. Accounts of Chemical Research, 2023, 56(2): 106⁃116. |
8 | HOU Y, WU K C, LEE C. Development of glycyrrhizin⁃conjugated, chitosan⁃coated, lysine⁃embedded mesoporous silica nanoparticles for hepatocyte⁃targeted liver tissue regeneration[J]. Materialia, 2020,9:100568. |
9 | NAGAR N, NAIDU G, Mishra A, et al. Protein⁃based nanocarriers and nanotherapeutics for infection and inflammation[J]. Journal of Pharmacology and Experimental Therapeutics, 2024, 388(1): 91⁃109. |
10 | ZHOU X, LIU P, NIE W, et al. Incorporation of dexamethasone⁃loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity[J]. International Journal of Biological Macromolecules, 2020,149:116⁃126. |
11 | GAO X, LIU Y, WEI J, et al. A facile dual⁃mode SERS/fluorescence aptasensor for AFB1 detection based on gold nanoparticles and magnetic nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 315: 124268. |
12 | KAWASAKI R, KONDO K, MIURA R, et al. Theranostic agent combining fullerene nanocrystals and gold nanoparticles for photoacoustic imaging and photothermal therapy[J]. International journal of molecular sciences, 2022, 23(9): 4 686. |
13 | CARNEIRO P G, PERIRA D G, DASILVA B M O, et al. Multifunctional modified carbon nanotubes as potential anti⁃tumor drug delivery[J]. Surfaces and Interfaces, 2023, 41: 103211. |
14 | YADAV S K, DAS S, LINCON A, et al. Gelatin⁃decorated Graphene oxide: a nanocarrier for delivering pH⁃responsive drug for improving therapeutic efficacy against atherosclerotic plaque[J]. International Journal of Pharmaceutics, 2024, 651: 123737. |
15 | CHEN S Y, WANG L Y, CHEN K C, et al. Ammonia synthesis over cesium⁃promoted mesoporous⁃carbon⁃supported ruthenium catalysts: Impact of graphitization degree of the carbon support[J]. Applied Catalysis B: Environment and Energy, 2024, 346: 123725. |
16 | 王 聪. 氮掺杂多腔介孔碳纳米粒子的构筑及其初步载药性能研究[D].广州:广东药科大学,2022. |
17 | CHIANG C F, HSU Y H, HSIEH W Y, et al. IOP injection, a novel superparamagnetic iron oxide particle MRI contrast agent for the detection of hepatocellular carcinoma: a phase II clinical trial[J]. Journal of Magnetic Resonance Imaging, 2023, 58(4): 1 177⁃1 188. |
18 | SOLEYMANI M, VELASHJERDI M, SHATERABADI Z, et al. One⁃pot preparation of hyaluronic acid‐coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44⁃overexpressing cancer cells[J]. Carbohydrate Polymers, 2020:116130. |
19 | YANG J, XIONG W, HUANG L, et al. A mesoporous superparamagnetic iron oxide nanoparticle as a generic drug delivery system for tumor ferroptosis therapy[J]. Journal of Nanobiotechnology, 2024, 22(1): 204⁃210. |
20 | HOSSAIN M K, SHARAFAT M K, MINAMI H, et al. Facile one⁃step synthesis of poly (styrene⁃glycidyl methacrylate)⁃Fe3O4 nanocomposite particles and application potency in glucose biosensors[J]. Journal of Polymer Research, 2023, 30(3): 118⁃211. |
21 | RANGEL A L R, FALENTIN⁃DAUDRÉ C, Da Silva Pimentel B N A, et al. Nanostructured titanium alloy surfaces for enhanced osteoblast response: A combination of morphology and chemistry[J]. Surface and Coatings Technology, 2020,383:125226. |
22 | MAISSEN M, GANDER T. Retrospective comparison of one⁃stage and two⁃stage orbital reconstruction in patients suffering from combined injuries of the midface[J]. British Journal of Oral and Maxillofacial Surgery, 2023, 61(4): 289⁃294. |
23 | LIU F, SINGH R, ZENG Q, et al. Gold nanoparticle⁃coated magnetic graphene oxide as a dual⁃mode immunochromatographic biosensor for enrofloxacin residue analysis in food samples[J]. ACS Applied Nano Materials, 2024,35(6):118⁃209. |
24 | KAZIMIR A, GOTZE T, LONNECKE P, et al. Exploring raloxifene‐based metallodrugs: a versatile vector combined with Pt (II), Palladium (II) and Nickel (II) dichlorides and carborates against triple‐negative breast cancer[J]. Chem Med Chem, 2024: e202400006. |
25 | FENG Y, LUO X, LI Z, et al. A ferroptosis⁃targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy[J]. Nature Communications, 2023, 14(1): 5 083. |
26 | LIU J, WANG W, WANG X, et al. PL/Vancomycin/Nano⁃hydroxyapatite Sustained⁃release Material to Treat Infectious Bone Defect[J]. Open Life Sciences, 2020,15(1):92⁃107. |
27 | WIJITWONGWAN R, INTASA⁃ARD S, OGAWA M. Preparation of MgGa layered double hydroxides and possible compositional variation[J]. Nanomaterials, 2021, 11(5): 1 206. |
28 | FERRÁNDEZ⁃MONTERO A, ORTEGAr C P, EGUILUZ A, et al. Biocompatible colloidal feedstock for material extrusion processing of bioceramic‐based scaffolds[J]. Polymer Composites, 2024,15(9):132⁃144. |
29 | CHEN X, CAO Y, CHEN C, et al. Vacuum brazing of medical TA9 alloy to ZrO2 bioceramics using a biocompatible filler: Interfacial microstructure, mechanical properties and biocompatibility[J]. Ceramics International, 2024,9(5):98⁃115. |
30 | LIU W, WANG D, HE G, et al. A novel porous titanium with engineered surface for bone defect repair in load‐bearing position[J]. Journal of Biomedical Materials Research Part A, 2024,8(10):11⁃23. |
31 | LUO X, XIONG Z, WANG D, et al. Highly biologically functional magnesium silicate⁃coated 3D printed round pore⁃shaped titanium scaffold alters exosomal miRNA expression to promote osteogenic differentiation for bone defect repair[J]. Chemical Engineering Journal, 2024: 151372. |
32 | LI Q, LI S, SUN H, et al. Preparation and characterizations of antibacterial iodine⁃containing coatings on pure Ti[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 151: 106366. |
33 | 徐玉梅. 氧化铈修饰的金纳米棒的制备及其在三阴性乳腺癌光免疫治疗中的应用研究[D].太原:山西医科大学,2023. |
34 | HU M, WEN C, LIU J, et al. Mechanism of cytotoxic action of gold nanorods photothermal therapy for A549 cell[J]. ACS Applied Bio Materials, 2023, 6(5): 1 886⁃1 895. |
35 | COSTA M, CARREIRO E P, FILHO C M C, et al. Chitosan salts as stabilizing agents for the synthesis of silver nanoparticles (AgNPs)[J]. ChemistrySelect, 2023, 8(1): e202203413. |
36 | Mamata, Agarwal A, Awasthi A, et al. Antibacterial activities of GO–Ag nanocomposites with various loading concentrations of Ag nanoparticles[J]. Applied Physics A, 2023, 129(12): 838⁃847. |
37 | 齐野. 金属硼咪唑框架基复合材料的结构构筑及其抗菌抗肿瘤性质[D].大连:大连理工大学,2022. |
38 | 王 涛,徐 伟.罗丹明6G在多孔硅⁃银粒子复合基底上的表面增强拉曼散射[J].复旦学报(自然科学版),2023,62(5):647⁃653+665. |
WANG T, XU W. Surface⁃enhanced raman scattering of rhodamine 6G on porous silicon⁃silver particle composites[J].Journal of Fudan University(Natural Science Edition ),20 23,62 (5):647⁃653+665. | |
39 | AMJADI M, NABIZADEH M, SAMADI A. In situ colorimetric determination of bisphenol a using silver nanoparticles[J]. Journal of Analytical Chemistry, 2023, 78(4): 464⁃470. |
40 | NAVYA P N, MADYASTHA H, MADHYASTHA R, et al. Single step formation of biocompatible bimetallic alloy nanoparticles of gold and silver using isonicotinylhydrazide[J]. Materials Science and Engineering: C, 2019,96:286⁃294. |
41 | 孟 彪. 线粒体介导Au/Au⁃Ag纳米粒子的合成及其性能研究[D].太原:太原理工大学,2018. |
42 | XU X, SUN X, TIAN Y, et al. Osteogenic activity of a micro/nano hierarchical nano⁃hydroxyapatite coating on zirconium alloy[J]. Materials Characterization, 2023, 205: 113356. |
43 | BONFIELD W, GRYNPAS M D, TULLY A E, et al. Hydroxyapatite reinforced polyethylene⁃⁃a mechanically compatible implant material for bone replacement.[J]. Biomaterials, 1981,2(3):185⁃186. |
44 | KONGTOGIANNI G I, COELHO C, GAUTHIER R, et al. Osteogenic potential of nano⁃hydroxyapatite and strontium⁃substituted nano⁃hydroxyapatite[J]. Nanomaterials, 2023, 13(12): 1 881. |
45 | LI L, SHI X, WANG Z, et al. Porous scaffolds of poly (lactic⁃co⁃glycolic acid) and mesoporous hydroxyapatite surface modified by poly (γ⁃benzyl⁃l⁃glutamate)(PBLG) for in vivo bone repair[J]. ACS Biomaterials Science & Engineering, 2019, 5(5): 2 466⁃2 481. |
46 | 傅超萍, 张黎明. 基于透明质酸的抗肿瘤药物载体研究进展[J]. 高分子通报, 2019(2):12. |
FU C P, ZHANG L M. Hyaluronic acid⁃based carriers for antitumor drug delivery[J]. Polymer Bulletin, 2019(2):12. | |
47 | OLAD A, HAGH H B K. Graphene oxide and amin⁃modified graphene oxide incorporated chitosan⁃gelatin scaffolds as promising materials for tissue engineering[J]. Composites Part B: Engineering, 2019,162:692⁃702. |
48 | WONG C, ZHILENKOV A V, KRAEVAYA O A, et al. Toward understanding the antitumor effects of water⁃soluble fullerene derivatives on lung cancer cells: Apoptosis or autophagy pathways[J]. Journal of medicinal chemistry, 2019,62(15):7 111⁃7 125. |
49 | HU Y, WANG Y, FENG Q, et al. Zn–Sr⁃sintered true bone ceramics enhance bone repair and regeneration[J]. Biomaterials Science, 2023, 11(10): 3 486⁃3 501. |
50 | SKWIRA A, SZEWCZYK A, BARROS J, et al. Biocompatible antibiotic⁃loaded mesoporous silica/bioglass/collagen⁃based scaffolds as bone drug delivery systems[J]. International Journal of Pharmaceutics, 2023, 645: 123408. |
51 | MONTIEL C K, BARRERA D, GARCIA V F, et al. Cephalexin loading and controlled release studies on mesoporous silica functionalized with amino groups[J]. Journal of Drug Delivery Science and Technology, 2022, 72: 103348. |
52 | XI Y, GE J, WANG M, et al. Bioactive anti⁃inflammatory, antibacterial, antioxidative silicon⁃based nanofibrous dressing enables cutaneous tumor photothermo⁃chemo therapy and infection⁃induced wound healing[J]. Acs Nano, 2020, 14(3): 2 904⁃2 916. |
53 | LIU D, YI C, WANG K, et al. Reorganization of cytoskeleton and transient activation of Ca2 + channels in mesenchymal stem cells cultured on silicon nanowire arrays[J]. ACS applied materials & interfaces, 2013,5(24):13 295⁃13 304. |
[1] | 周伟, 陈杰, 司志昊, 沈方琳, 罗雄方, 王文娟, 顾越, 孟心怡. 抗菌功能化明胶基复合材料的研究进展[J]. 中国塑料, 2025, 39(2): 112-117. |
[2] | 余田亮, 陈文革, 陈施润, 陈达, 周伟, 周兰燕. 石墨烯增强PE复合材料的组织与性能研究[J]. 中国塑料, 2025, 39(2): 15-20. |
[3] | 张辉, 唐站站, 鲍海霞, 程鑫远, 陈斌. 不同环境温度下UPVC管材的力学性能退化研究[J]. 中国塑料, 2025, 39(2): 26-31. |
[4] | 丁雯. 磷基⁃水性聚氨酯阻燃剂的制备及对棉织物的涂层[J]. 中国塑料, 2025, 39(2): 82-85. |
[5] | 张辉 唐站站 鲍海霞 程鑫远 陈斌. 不同环境温度下UPVC管材的力学性能退化研究[J]. , 2025, 39(2): 26-31. |
[6] | 曾玉 唐鹿. 氮化硼对纳米洋葱碳/硅橡胶复合材料的介电和力学性能的影响[J]. 中国塑料, 2025, 39(1): 25-30. |
[7] | 马封安, 赵广慧, 田程, 贾宇喆, 刘涛. 缺陷对连续纤维增强复合材料力学性能影响的研究进展[J]. 中国塑料, 2025, 39(1): 104-111. |
[8] | 黄起中. 磷酸酯盐类成核剂对煤基抗冲共聚聚丙烯K8708结晶和力学性能的影响研究[J]. 中国塑料, 2025, 39(1): 19-24. |
[9] | 陈卓, 胡婕, 马超, 李晓慧, 班甜甜, 刘小翠. 贵州地形及气候条件下生物降解地膜对白菜产量、土壤环境和经济效益的影响[J]. 中国塑料, 2025, 39(1): 97-103. |
[10] | 崔豹, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚乳酸复合材料共混改性研究及应用进展[J]. 中国塑料, 2024, 38(9): 129-136. |
[11] | 曲道鹏, 张涛, 华晨曦, 宋欣雨, 程昌利, 刘禹, 王震宇. 高强电磁屏蔽环氧复合材料的3D打印工艺研究[J]. 中国塑料, 2024, 38(9): 24-29. |
[12] | 翟孟雷, 陈文广, 黄明, 雷金宇, 张娜, 刘春太, 高国利. 大丝束碳纤维束内横向动态渗透率计算方法及数值验证[J]. 中国塑料, 2024, 38(9): 54-59. |
[13] | 殷茂峰, 王晓珂, 孙国华, 张信, 李鹏鹏, 马劲松, 肖军, 侯连龙. 红外光谱快速检测生物降解聚酯的研究[J]. 中国塑料, 2024, 38(9): 94-100. |
[14] | 孙鹤, 何欣, 骆彤雨, 吉欣, 廖琪玲, 张玉霞, 周洪福. ABS/CNTs/Fe3O4复合材料及其双峰泡沫的电磁屏蔽性能研究[J]. 中国塑料, 2024, 38(8): 46-52. |
[15] | 戈家荣, 关国英, 姚子佳, 童方强, 王博群. 大型无人机复合材料舵面整体制造技术[J]. 中国塑料, 2024, 38(8): 76-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||