中国塑料 ›› 2011, Vol. 25 ›› Issue (12): 55-58 .DOI: 10.19491/j.issn.1001-9278.2011.12.015

• 加工与应用 • 上一篇    下一篇

BP神经网络在PP/POE-g-MAH/PP增韧PA6研究中的应用

陈坤 郑梯和 宋克东 田祥儒 张瑜   

  1. 株洲时代新材料科技股份有限公司
  • 收稿日期:2011-07-29 修回日期:2011-10-12 出版日期:2011-12-26 发布日期:2011-12-26

Application of BP Neural Network on PP/POE-g-MAH/PP Toughening PA6

Kun CHEN Tihe ZHENG Kedong SONG Xiangru TIAN Yu ZHANG   

  • Received:2011-07-29 Revised:2011-10-12 Online:2011-12-26 Published:2011-12-26
  • Contact: Kun CHEN

摘要: 采用均匀设计法和BP神经网络研究了聚丙烯(PP)/马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)对聚酰胺6(PA6)的增韧作用,并在此基础上建立了PA6/(PP/POE-g-MAH)复合材料中各组分含量与复合材料冲击强度关系的3层BP神经网络预测模型。结果表明,该模型和实验结果基本吻合,可信度较高;当POE-g-MAH含量为14.00 %(质量分数,下同)、PP含量为9.00 %时,PA6的缺口冲击强度达到92.12 kJ/m2。

关键词: 神经网络, 聚酰胺 6, 聚丙烯, 增韧, 马来酸酐

Abstract: The research of POE-g-MAH/PP toughening PA6 was conducted by BP neural network and homogeneous design in this paper. On this basis,a 3-layer BP neural network prediction model for composite between impact strength and the composition was established. The prediction by the model agreed well with the experiments. The impact strength of the toughening nylon6 reached 92.12kJ/m2 when the content of POE-g-MAH was 14.00% and PP content was 9.00%.

Key words: neural network, polyamide 6, polypropylene, toughen, maleic anhydride