京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (7): 1-8.DOI: 10.19491/j.issn.1001-9278.2024.07.001
• Materials and Properties • Next Articles
HE Hezhi(), HUANG Zonghai, LAI Wen, XIONG Huawei
Received:
2023-11-22
Online:
2024-07-26
Published:
2024-07-24
CLC Number:
HE Hezhi, HUANG Zonghai, LAI Wen, XIONG Huawei. Preparation and properties of PLA/PBAT/CB antistatic packaging materials[J]. China Plastics, 2024, 38(7): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.07.001
材料 | 表面张力/mN·m-1 | 材料 | 界面张力/mN·m-1 | ||
---|---|---|---|---|---|
CB⁃PLA | 37.98 | ||||
PLA | 39.4 | 33.6 | 5.8 | CB⁃PBAT | 35.73 |
PBAT | 38.4 | 32.1 | 6.3 | PLA⁃PBAT | 0.055 |
CB | 42.46 | 7.29 | 35.17 | ω | 40.91 |
材料 | 表面张力/mN·m-1 | 材料 | 界面张力/mN·m-1 | ||
---|---|---|---|---|---|
CB⁃PLA | 37.98 | ||||
PLA | 39.4 | 33.6 | 5.8 | CB⁃PBAT | 35.73 |
PBAT | 38.4 | 32.1 | 6.3 | PLA⁃PBAT | 0.055 |
CB | 42.46 | 7.29 | 35.17 | ω | 40.91 |
样品 | Tc/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | χc/% |
---|---|---|---|---|
PLA/PBAT/0 | 103.7 | 21.63 | 27.81 | 8.25 |
PLA/PBAT/1 | 105.7 | 20.31 | 22.94 | 3.55 |
PLA/PBAT/2 | 106.6 | 20.46 | 23.24 | 3.79 |
PLA/PBAT/3 | 105.3 | 18.34 | 22.95 | 6.35 |
PLA/PBAT/4 | 103.6 | 18.72 | 25.55 | 9.50 |
样品 | Tc/℃ | ΔHc/J·g-1 | ΔHm/J·g-1 | χc/% |
---|---|---|---|---|
PLA/PBAT/0 | 103.7 | 21.63 | 27.81 | 8.25 |
PLA/PBAT/1 | 105.7 | 20.31 | 22.94 | 3.55 |
PLA/PBAT/2 | 106.6 | 20.46 | 23.24 | 3.79 |
PLA/PBAT/3 | 105.3 | 18.34 | 22.95 | 6.35 |
PLA/PBAT/4 | 103.6 | 18.72 | 25.55 | 9.50 |
样品 | T5 % /℃ | Tmax /℃ | R595 /% |
---|---|---|---|
PLA/PBAT/0 | 322.7 | 358.1 | 2.51 |
PLA/PBAT/1 | 324.5 | 356.9 | 3.83 |
PLA/PBAT/2 | 326.7 | 358.4 | 4.72 |
PLA/PBAT/3 | 329 | 359.3 | 5.92 |
PLA/PBAT/4 | 328.3 | 359.3 | 6.78 |
样品 | T5 % /℃ | Tmax /℃ | R595 /% |
---|---|---|---|
PLA/PBAT/0 | 322.7 | 358.1 | 2.51 |
PLA/PBAT/1 | 324.5 | 356.9 | 3.83 |
PLA/PBAT/2 | 326.7 | 358.4 | 4.72 |
PLA/PBAT/3 | 329 | 359.3 | 5.92 |
PLA/PBAT/4 | 328.3 | 359.3 | 6.78 |
样品 | 拉伸强度/MPa | 弹性模量/MPa | 断裂伸长率/% |
---|---|---|---|
PLA/PBAT/0 | 45.7±1.5 | 904±38 | 344±15 |
PLA/PBAT/1 | 44.5±0.8 | 877±33 | 408±10 |
PLA/PBAT/2 | 40.7±1.0 | 830±37 | 365±23 |
PLA/PBAT/3 | 40.5±1.7 | 834±32 | 292±35 |
PLA/PBAT/4 | 43.0±1.2 | 855±35 | 106±24 |
样品 | 拉伸强度/MPa | 弹性模量/MPa | 断裂伸长率/% |
---|---|---|---|
PLA/PBAT/0 | 45.7±1.5 | 904±38 | 344±15 |
PLA/PBAT/1 | 44.5±0.8 | 877±33 | 408±10 |
PLA/PBAT/2 | 40.7±1.0 | 830±37 | 365±23 |
PLA/PBAT/3 | 40.5±1.7 | 834±32 | 292±35 |
PLA/PBAT/4 | 43.0±1.2 | 855±35 | 106±24 |
1 | Liu Y, Lu S, Luo J, et al. Research progress of antistatic‐reinforced polymer materials: a review[J]. Polymers for Advanced Technologies, 2023,34(4):1 393⁃1 404. |
2 | 石 磊, 尹 波, 田春蓉, 等. 抗静电泡沫塑料[J]. 中国塑料, 2004,18(5):6⁃11. |
SHI L, YIN B, TIAN C R, et al. Antistatic foam plastics[J]. China Plastics, 2004,18(5):6⁃11. | |
3 | Sd Santos M, Montagna L S, Rezende M C, et al. A new use for glassy carbon: development of LDPE/glassy carbon composites for antistatic packaging applications[J]. Journal of Applied Polymer Science, 2019,136(11):47204. |
4 | 杨小龙, 陈文静, 李永青, 等. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022,36(6):165⁃173. |
YANG X L, CHEN W J, LI Y Q, et al. Research progress in polymer/graphene conductive composites[J]. China Plastics, 2022,36(6):165⁃173. | |
5 | Liu Y F, Feng L M, Chen Y F, et al. Segregated polypropylene/cross⁃linked poly(ethylene⁃co-1⁃octene)/multi⁃walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: towards electromagnetic interference shielding and thermistors[J]. Composites Science and Technology, 2018,159:152⁃161. |
6 | 金燚翥, 孙晓玮, 张晓亮, 等. 导电炭黑的发展现状和行业研究[J]. 炭素, 2023(2): 43⁃46. |
JIN Y Z, SUN X W, ZHANG X L, et al. Development status and industry research of conductive carbon black[J]. Carbon, 2023(2): 43⁃46. | |
7 | Marischal L, Cayla A, Lemort G, et al. Selection of immiscible polymer blends filled with carbon nanotubes for heating applications[J]. Polymers, 2019,11(11):1 827. |
8 | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022,36(6):155⁃164. |
SHAO L Y, XI Y W, WENG Y X. Research progress in degradation characteristics of poly(lactic acid)composites[J]. China Plastics, 2022,36(6):155⁃164. | |
9 | 张 禹, 何继敏, 周 麒, 等. PLA与PBAT共混改性研究进展[J]. 工程塑料应用, 2023,51(10): 173⁃178. |
ZHANG Y, HE J M, ZHOU L, et al. Research progress in PLA and PBAT blending modification[J]. Engineering Plastics Application, 2023,51(10):173⁃178. | |
10 | Guo J, Tsou C H, Yu Y, et al. Conductivity and mechanical properties of carbon black⁃reinforced poly(lactic acid) (PLA/CB) composites[J]. Iranian Polymer Journal. 2021,30(12):1 251⁃1 262. |
11 | Fd Silva T, Menezes F, Montagna L S, et al. Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites[J]. Journal of Applied Polymer Science, 2019,136(13):47273. |
12 | Xiao Z, Li G, Liu C, et al. The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate‐co‐terephthalate) blends[J]. Polymer Composites, 2022,43(12):8 725⁃8 736. |
13 | Harada J M J, Machado G A F, Valenzuela⁃Diaz F, et al. Effects of carbon black incorporation on morphological, mechanical and thermal properties of biodegradable films[R]. Characterization of Minerals, Metals, and Materials, 2016. |
14 | Shi Y D, Cheng Y H, Chen Y F, et al. Morphology, rheological and crystallization behavior in thermoplastic polyurethane toughed poly(l⁃lactide) with stereocomplex crystallites[J]. Polymer Testing, 2017,62:1⁃12. |
15 | Garlotta D. A literature review of poly(lactic acid) [J]. Journal of Polymers and the Environment, 2001,9(2):22. |
16 | Wang Q, Zhang J, Wang X, et al. Significant enhancement of notched Izod impact strength of PLA⁃based blends through encapsulating PA11 particles of low amounts by EGMA elastomer[J]. Applied Surface Science, 2020,526:146657. |
17 | Chen Y, Wu Z, Fan Q, et al. Great toughness reinforcement of isotactic polypropylene/elastomer blends with quasi⁃cocontinuous phase morphology by traces of β⁃nucleating agents and carbon nanotubes[J]. Composites Science and Technology, 2018,167:277⁃284. |
18 | Decol M, Pachekoski W M, Segundo E H, et al. Effects of processing conditions on hybrid filler selective localization, rheological, and thermal properties of poly(ε‐caprolactone)/poly(lactic acid) blends[J]. Journal of Applied Polymer Science, 2020,137(20):48711. |
19 | Zolali A M, Favis B D. Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement[J]. Soft Matter, 2017,13(15):2 844⁃2 856. |
20 | Stammitti⁃Scarpone A, Acosta E J. Solid⁃liquid⁃liquid wettability and its prediction with surface free energy models[J]. Advances in Colloid and Interface Science, 2019,264:28⁃46. |
21 | Jalali Dil E, Favis B D. Localization of micro⁃ and nano⁃silica particles in heterophase poly(lactic acid)/poly(butylene adipate⁃co⁃terephthalate) blends[J]. Polymer, 2015,76:295⁃306. |
22 | Mezgebe M, Shen Q, Zhang J Y, et al. Liquid adsorption behavior and surface properties of carbon blacks[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012,403:25⁃28. |
23 | Zhan Z, He H, Zhu Z, et al. Blends of rABS and SEBS: influence of in⁃situ compatibilization on the mechanical properties[J]. Materials, 2019,12:2352. |
24 | Ren D, Zheng S, Wu F, et al. Formation and evolution of the carbon black network in polyethylene/carbon black composites: rheology and conductivity properties[J]. Journal of Applied Polymer Science, 2014,131(7):39953. |
25 | Chenal J M, Chazeau L, Bomal Y, et al. New insights into the cold crystallization of filled natural rubber[J]. Journal of Polymer Science Part B: Polymer Physics, 2007,45(8):955⁃962. |
26 | Ahmad I A, Kim H K, Deveci S, et al. Non⁃isothermal crystallisation kinetics of carbon black⁃ graphene⁃based multimodal⁃polyethylene nanocomposites[J]. Nanomaterials, 2019,9(1):110. |
27 | Knyazheva O A, Kokhanovskaya O A, Vasilevich A V, et al. Thermal stability of sulfonated carbon black[J]. Thermochimica Acta, 2023,728:179593. |
28 | Association Standard ESD. For the protection of electrostatic discharge susceptible items⁃packaging materials for ESD sensitive items [S]. New York, 2008, 25. |
29 | Koopmans M, Leiviskä MAT, Liu J, et al. Electrical conductivity of doped organic semiconductors limited by carrier⁃carrier interactions[J]. ACS Appl Mater Interfaces, 2020,12(50):56 222⁃56 230. |
30 | Laredo E, Bello A, Diaz J, et al. Effect of cold⁃crystallization on the AC and DC conductive properties of polylactide biocomposites with carboxylic or neat large aspect ratio MWCNT[J]. Polymer Composites, 2013,34(1):67⁃76. |
31 | Xiao X, Chevali V S, Song P, et al. Enhanced toughness of PLLA/PCL blends using poly(d⁃lactide)⁃poly(ε⁃caprolactone)⁃poly(d⁃lactide) as compatibilizer[J]. Composites Communications, 2020,21:100385. |
[1] | WANG Shen, LIU Xuanbo, ZHANG Yanfang, JIA Xuefei, ZHU Guixiang, ZHANG Longgui. Research progress in biodegradable nonwoven materials [J]. China Plastics, 2024, 38(7): 86-92. |
[2] | SU Yuhang, ZHOU Yuhong, LIN Yuanzhi, MAO Jianquan, WANG Yongxiang, LIU Xiang, YU Li, KE Junmu. Effect of elastomer on the properties of glue⁃free PP/EVA composite films [J]. China Plastics, 2024, 38(6): 44-50. |
[3] | ZHANG Chunbo, LIU Xuanbo, YAO Xuerong, SU Cui, SHI Hongwei, ZHANG Longgui, ZHANG Taoyi. Study on 3D phase structure in low density polyethylene/ethylene⁃vinyl alcohol copolymer (PE⁃LD/EVOH) blends through confocal Raman imaging [J]. China Plastics, 2024, 38(4): 1-5. |
[4] | MENG Fanyue, WEN Yue, LI Chen, GAO Shan. Research progress in aerobic biodegradation of bio⁃based plastic packaging materials [J]. China Plastics, 2024, 38(4): 109-115. |
[5] | DUAN Shuqian, LIU Shuya, LIU Jianghui, CHENG Xiaoqiong, MENG Dan, ZHANG Xianqun, CHEN Xiao, FU Hai. Study on antistatic properties of networked polypyrrole/polyurethane composites [J]. China Plastics, 2024, 38(2): 33-38. |
[6] | QI Shijie, YOU Xiangyu, WANG Ruichen, ZHOU Linfei, ZHANG Huijie. Preparation and properties of poly(lactic acid)/lignin blends with high lignin content [J]. China Plastics, 2024, 38(2): 45-51. |
[7] | CHEN Cheng, ZHANG Hao, YANG Mengyao, CHEN Haiying, SUN Hao, WEI Lingjun. Effect of poly(vinyl acetate) (PVAc) on physicochemical properties of PHB/PCL blends [J]. China Plastics, 2024, 38(1): 14-20. |
[8] | REN Guozhen, WANG Mengmeng, HUANG Jianjian, JIN Gang. Study on preparation and properties of PEEK/TLCP blends under volume elongation flow field [J]. China Plastics, 2023, 37(8): 1-7. |
[9] | . Effects of double-side film and fiber content on warpage and mechanical properties of products prepared by MIM/MID [J]. , 2023, 37(5): 55-61. |
[10] | MA Zhirui, YIN Tian, JIANG Zhikui, YANG Fan, ZHU Mengke, YANG Yang, HAN Yu, WENG Yunxuan, ZHANG Caili. Research progress in preparation and applications of PBS and its blends [J]. China Plastics, 2023, 37(10): 24-33. |
[11] | SONG Danyang, ZHENG Hongjuan, LI Yilong. Research progress in PLA⁃based oil⁃water separation materials [J]. China Plastics, 2022, 36(9): 187-192. |
[12] | DU Qing, HE Yi, YU Tanjing, LAN Yanjiao, ZHAO Yanzhi, ZHOU Juying. Preparation and characterization of oriented thermoplastic polyolefin/PAN/ MWCNT composites [J]. China Plastics, 2022, 36(8): 49-55. |
[13] | LIN Wen, ZHAO Jingjing, SU Tingting, WANG Zhanyong. Research progress in biodegradation of polystyrene [J]. China Plastics, 2022, 36(7): 143-149. |
[14] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[15] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||