京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (6): 155-164.DOI: 10.19491/j.issn.1001-9278.2022.06.024
• Review • Previous Articles Next Articles
SHAO Linying1, XI Yuewei1,2(), WENG Yunxuan1,2(
)
Received:
2022-01-05
Online:
2022-06-26
Published:
2022-06-27
CLC Number:
SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites[J]. China Plastics, 2022, 36(6): 155-164.
样品名称 | 添加剂 | 添加量/ % | 第二次热循环 | 参考文献 | |||
---|---|---|---|---|---|---|---|
Tm/℃ | Tc/℃ | Xc/% | |||||
PLA | 无 | 0 | 177 | 113 | 54.3 | [ | |
PLA/lignin | lignin | 5 | 177 | 112 | 45.4 | [ | |
PLA/lignin | lignin | 10 | 174 | 101 | 42.5 | [ | |
PLA/lignin | lignin | 15 | 174 | 92 | 30.3 | [ | |
PLA | 无 | 0 | 177 | 98 | 13.80 | [ | |
PLA/WF | WF | 7.5 | 177 | 96 | 16.65 | [ | |
PLA/WF | WF | 15 | 178 | 94 | 16.34 | [ | |
PLA/BF | BF | 7.5 | 176 | 97 | 14.22 | [ | |
PLA/BF | BF | 15 | 178 | 95 | 13.24 | [ |
样品名称 | 添加剂 | 添加量/ % | 第二次热循环 | 参考文献 | |||
---|---|---|---|---|---|---|---|
Tm/℃ | Tc/℃ | Xc/% | |||||
PLA | 无 | 0 | 177 | 113 | 54.3 | [ | |
PLA/lignin | lignin | 5 | 177 | 112 | 45.4 | [ | |
PLA/lignin | lignin | 10 | 174 | 101 | 42.5 | [ | |
PLA/lignin | lignin | 15 | 174 | 92 | 30.3 | [ | |
PLA | 无 | 0 | 177 | 98 | 13.80 | [ | |
PLA/WF | WF | 7.5 | 177 | 96 | 16.65 | [ | |
PLA/WF | WF | 15 | 178 | 94 | 16.34 | [ | |
PLA/BF | BF | 7.5 | 176 | 97 | 14.22 | [ | |
PLA/BF | BF | 15 | 178 | 95 | 13.24 | [ |
薄膜种类 | 添加量/ % | 热性能 | ||
---|---|---|---|---|
Tg/℃ | Tm/℃ | ΔHm/J•g-1 | ||
PLA | 0 | 50.1±7.5 | 150.4±0.4 | 22.4±3.1 |
PLA/PWP5 | 5 | 48.3±5.4 | 148.1±3.8 | 21.3±8.9 |
PLA/PWP8.5 | 8.5 | 43.4±6.7 | 148.3±3.6 | 19.4±0.4 |
PLA/PWP13 | 13 | 38.6±7.4 | 149.8±3.2 | 18.7±0.4 |
PLA/EEP5 | 5 | 46.7±2.4 | 151.2±1.4 | 24.2±2.4 |
PLA/EEP8.5 | 8.5 | 43.7±3.4 | 149.7±0.9 | 21.6±4.7 |
PLA/EEP13 | 13 | 49.8±4.8 | 146.8±1.4 | 11.4±6.5 |
薄膜种类 | 添加量/ % | 热性能 | ||
---|---|---|---|---|
Tg/℃ | Tm/℃ | ΔHm/J•g-1 | ||
PLA | 0 | 50.1±7.5 | 150.4±0.4 | 22.4±3.1 |
PLA/PWP5 | 5 | 48.3±5.4 | 148.1±3.8 | 21.3±8.9 |
PLA/PWP8.5 | 8.5 | 43.4±6.7 | 148.3±3.6 | 19.4±0.4 |
PLA/PWP13 | 13 | 38.6±7.4 | 149.8±3.2 | 18.7±0.4 |
PLA/EEP5 | 5 | 46.7±2.4 | 151.2±1.4 | 24.2±2.4 |
PLA/EEP8.5 | 8.5 | 43.7±3.4 | 149.7±0.9 | 21.6±4.7 |
PLA/EEP13 | 13 | 49.8±4.8 | 146.8±1.4 | 11.4±6.5 |
1 | Qin M, Chen C, Song B, et al. A review of biodegradable plastics to biodegradable microplastics: another ecological threat to soil environments? [J]. J Clean Prod, 2021, 312. |
2 | Rezvani Ghomi E, Khosravi F, Saedi Ardahaei A, et al. The life cycle assessment for polylactic acid (PLA) to make it a low⁃carbon material [J]. Polymers, 2021, 13(11). |
3 | Kliem S, Kreutzbruck M, Bonten C. Review on the biological degradation of polymers in various environments [J]. Materials, 2020, 13(20). |
4 | Jambeck J R, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6223): 768⁃771. |
5 | Zaaba N F, Jaafar M. A Review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation [J]. Polym Eng Sci, 2020, 60(9): 2 061⁃2 075. |
6 | Haider T P, Volker C, Kramm J, et al. Plastics of the future? the impact of biodegradable polymers on the environment and on society [J]. Angew Chem Int Ed Engl, 2019, 58(1): 50⁃62. |
7 | Armentano I, Bitinis N, Fortunati E, et al. Multifunctional nanostructured PLA materials for packaging and tissue engineering [J]. Prog Polym Sci, 2013, 38(10⁃11): 1 720⁃1 747. |
8 | Rajeshkumar G, Arvindh Seshadri S, Devnani G L, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites⁃a comprehensive review [J]. J Clean Prod, 2021, 310. |
9 | Ramesh P, Vinodh S. State of art review on life cycle assessment of polymers [J]. Int J Sustain Eng, 2020, 13(6): 411⁃422. |
10 | Rasal R M, Janorkar A V, Hirt D E. Poly(lactic acid) modifications [J]. Prog Polym Sci, 2010, 35(3): 338⁃356. |
11 | Rosli N A, Karamanlioglu M, Kargarzadeh H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review [J]. Int J Biol Macromol, 2021, 187: 732⁃741. |
12 | Andrzejewska A. One year evaluation of material properties changes of polylactide parts in various hydrolytic degradation conditions [J]. Polymers, 2019, 11(9). |
13 | Sednickova M, Pekarova S, Kucharczyk P, et al. Changes of physical properties of pla⁃based blends during early stage of biodegradation in compost [J]. Int J Biol Macromol, 2018, 113: 434⁃442. |
14 | Madhavan Nampoothiri K, Nair N R, John R P. An overview of the recent developments in polylactide research [J]. Bioresour Technol, 2010, 101(22): 8 493⁃8 501. |
15 | Karamanlioglu M, Preziosi R, Robson G D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review [J]. Polym Degradation Stab, 2017, 137: 122⁃130. |
16 | Larrañaga A, Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters [J]. Eur Polym J, 2019, 121. |
17 | Da Silva S A, Hinkel E W, Lisboa T C, et al. A biostimulation⁃based accelerated method for evaluating the biodegradability of polymers [J]. Polym Test, 2020, 91. |
18 | Mayekar P C, Castro⁃Aguirre E, Auras R, et al. Effect of nano⁃clay and surfactant on the biodegradation of poly(lactic acid) films [J]. Polymers, 2020, 12(2). |
19 | Saadi Z, Rasmont A, Cesar G, et al. Fungal degradation of poly(l⁃lactide) in soil and in compost [J]. J Polym Environ, 2011, 20(2): 273⁃282. |
20 | Longieras A, J⁃B Tanchette, Erre D, et al. Compostability of poly(lactide): degradation in an inert solid medium [J]. J Polym Environ, 2007, 15(3): 200⁃206. |
21 | Wang H, Pu Y, Ragauskas A, et al. From lignin to valuable products⁃strategies, challenges, and prospects [J]. Bioresour Technol, 2019, 271: 449⁃461. |
22 | Sugiarto S, Leow Y, Tan C L, et al. How far is lignin from being a biomedical material? [J]. Bioact Mater, 2022, 8: 71⁃94. |
23 | Silva T F D, Menezes F, Montagna L S, et al. Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites [J]. Mater Sci Eng, B, 2019, 251. |
24 | Wang Y, Liu S, Wang Q, et al. Strong, ductile and biodegradable polylactic acid/lignin⁃containing cellulose nanofibril composites with improved thermal and barrier properties [J]. Ind Crops Prod, 2021, 171. |
25 | Sun C, Huang Z, Liu Y, et al. The effect of carbodiimide on the stability of wood fiber/poly(lactic acid) composites during soil degradation [J]. J Polym Environ, 2020, 28(4): 1 315⁃1 325. |
26 | Kuciel S, Mazur K, Hebda M. The influence of wood and basalt fibres on mechanical, thermal and hydrothermal properties of PLA composites [J]. J Polym Environ, 2020, 28(4): 1 204⁃1 215. |
27 | Quitadamo A, Massardier V, Iovine V, et al. Effect of cellulosic waste derived filler on the biodegradation and thermal properties of hdpe and PLA composites [J]. Processes, 2019, 7(10). |
28 | E⁃R Radu, Panaitescu D M, C⁃A Nicolae, et al. The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate [J]. J Polym Environ, 2021, 29(7): 2 310⁃2 320. |
29 | Ilyas R A, Sapuan S M, Harussani M M, et al. Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications [J]. Polymers, 2021, 13(8). |
30 | Hegyesi N, Zhang Y, Kohári A, et al. Enzymatic degradation of PLA/cellulose nanocrystal composites [J]. Ind Crops Prod, 2019, 141. |
31 | Zhao X P, Hu H, Wang X, et al. Super tough poly(lactic acid) blends: a comprehensive review [J]. Rsc Advances, 2020, 10(22): 13 316⁃13 368. |
32 | Coiai S, Di Lorenzo M L, Cinelli P, et al. Binary green blends of poly(lactic acid) with poly(butylene adipate⁃co⁃butylene terephthalate) and poly(butylene succinate⁃co⁃butylene adipate) and their nanocomposites [J]. Polymers, 2021, 13(15). |
33 | Qiu S, Zhou Y, Waterhouse G I N, et al. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films [J]. Food Chem, 2021, 334: 127487. |
34 | Correa⁃Pacheco Z N, Black⁃Solis J D, Ortega⁃Gudino P, et al. Preparation and characterization of bio⁃based PLA/PBAT and cinnamon essential oil polymer fibers and life⁃cycle assessment from hydrolytic degradation [J]. Polymers, 2019, 12(1). |
35 | Jian J, Xiangbin Z, Xianbo H. An overview on synthesis, properties and applications of poly(butylene⁃adipate⁃co⁃terephthalate)–PBAT [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(1): 19⁃26. |
36 | Rameshkumar S, Shaiju P, O'connor K E, et al. Bio⁃based and biodegradable polymers ⁃ state⁃of⁃the⁃art, challenges and emerging trends [J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 75⁃81. |
37 | Gao X, Xie D, Yang C. Effects of a PLA/PBAT biodegradable film mulch as a replacement of polyethylene film and their residues on crop and soil environment [J]. Agric Water Manage, 2021, 255. |
38 | Ren Y, Hu J, Yang M, et al. Biodegradation behavior of poly (lactic acid) (PLA), poly (butylene adipate⁃co⁃terephthalate) (PBAT), and their blends under digested sludge conditions [J]. J Polym Environ, 2019, 27(12): 2 784⁃2 792. |
39 | Fu Y, Wu G, Bian X, et al. Biodegradation behavior of poly(butylene adipate⁃co⁃terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend in freshwater with sediment [J]. Molecules, 2020, 25(17). |
40 | Jia H, Zhang M, Weng Y, et al. Degradation of polylactic acid/polybutylene adipate⁃co⁃terephthalate by coculture of pseudomonas mendocina and actinomucor elegans [J]. J Hazard Mater, 2021, 403: 123679. |
41 | Rocha D B, Souza De Carvalho J, De Oliveira S A, et al. A new approach for flexible PBAT/PLA/CaCO3 films into agriculture [J]. J Appl Polym Sci, 2018, 135(35). |
42 | Kim H⁃S, Park B H, Choi J H, et al. Mechanical properties and thermal stability of poly(l⁃lactide)/calcium carbonate composites [J]. J Appl Polym Sci, 2008, 109(5): 3 087⁃3 092. |
43 | Ulloa P A, Vidal J, Dicastillo C, et al. Development of poly(lactic acid) films with propolis as a source of active compounds: biodegradability, physical, and functional properties [J]. J Appl Polym Sci, 2018, 136(8). |
44 | Srimalanon P, Prapagdee B, Sombatsompop N. Soil inoculation with pseudomonas geniculata ws3 for accelerating the biodegradation process of in situ compatibilized Pbs/PLA blends doped with hpqm [J]. J Polym Environ, 2020, 28(4): 1 138⁃1 149. |
45 | Brdlik P, Boruvka M, Behalek L, et al. Biodegradation of poly(lactic acid) biocomposites under controlled composting conditions and freshwater biotope [J]. Polymers, 2021, 13(4). |
46 | Mazur K, Singh R, Friedrich R P, et al. The effect of antibacterial particle incorporation on the mechanical properties, biodegradability, and biocompatibility of PLA and PHBV composites [J]. Macromol Mater Eng, 2020, 305(9). |
47 | Ramos M, Fortunati E, Beltran A, et al. Controlled release, disintegration, antioxidant, and antimicrobial properties of poly (lactic acid)/thymol/nanoclay composites [J]. Polymers, 2020, 12(9). |
48 | Siakeng R, Jawaid M, Asim M, et al. Accelerated weathering and soil burial effect on biodegradability, colour and textureof coir/pineapple leaf fibres/PLA biocomposites [J]. Polymers, 2020, 12(2). |
49 | Boonluksiri Y, Prapagdee B, Sombatsompop N. Promotion of polylactic acid biodegradation by a combined addition of PLA⁃degrading bacterium and nitrogen source under submerged and soil burial conditions [J]. Polym Degradation Stab, 2021, 188. |
50 | Stoleru E, Vasile C, Oprica L, et al. Influence of the chitosan and rosemary extract on fungal biodegradation of some plasticized PLA⁃based materials [J]. Polymers, 2020, 12(2). |
51 | Pantani R, Sorrentino A. Influence of crystallinity on the biodegradation rate of injection⁃moulded poly(lactic acid) samples in controlled composting conditions [J]. Polym Degradation Stab, 2013, 98(5): 1 089⁃1 096. |
52 | De Jong S J, Arias E R, Rijkers D T S, et al. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus [J]. Polymer, 2001, 42(7): 2 795⁃2 802. |
53 | Valentina I, Haroutioun A, Fabrice L, et al. Poly(lactic acid)⁃based nanobiocomposites with modulated degradation rates [J]. Materials, 2018, 11(10). |
54 | Mai F, Tu W, Bilotti E, et al. Preparation and properties of self⁃reinforced poly(lactic acid) composites based on oriented tapes [J]. Compos Part A Appl Sci Manuf, 2015, 76: 145⁃153. |
55 | Alcock B, Peijs T. Technology and development of self⁃reinforced polymer composites [J]. Polymer Composites ⁃ Polyolefin Fractionation ⁃ Polymeric Peptidomimetics ⁃ Collagens, 2013, 251: 1⁃76. |
56 | Gil⁃Castell O, Badia J D, Ingles⁃Mascaros S, et al. Polylactide⁃based self⁃reinforced composites biodegradation: individual and combined influence of temperature, water and compost [J]. Polym Degradation Stab, 2018, 158: 40⁃51. |
57 | Wang Q, Li Y, Zhou X, et al. Toughened poly(lactic acid)/bep composites with good biodegradability and cytocompatibility [J]. Polymers, 2019, 11(9). |
58 | Karamanlioglu M, Houlden A, Robson G D. Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost [J]. Int Biodeterior Biodegradation, 2014, 95: 301⁃310. |
[1] | LIN Wen, ZHAO Jingjing, SU Tingting, WANG Zhanyong. Research progress in biodegradation of polystyrene [J]. China Plastics, 2022, 36(7): 143-149. |
[2] | SHEN Xuemei, ZHU Xiaolong, HU Yanchao, SONG Renyuan, ZHANG Xianfeng, LI Xi. Fabrication and properties of poly(lactic acid))/ibuprofen microspheres through electrostatic spray method [J]. China Plastics, 2022, 36(7): 61-67. |
[3] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
[4] | SUI Zhenquan, MAO Jinchao, FAN Jinshi. Preparation and applications of chitosan/poly(vinyl alcohol) liquid mulch films [J]. China Plastics, 2022, 36(3): 21-25. |
[5] | SUN Tao, YANG Qing, HU Jian, WANG Yangyang, LIU Bo, YUN Xueyan, DONG Tungalag. Preparation and properties of poly(lactic acid⁃co⁃glycolic acid) film [J]. China Plastics, 2022, 36(2): 33-40. |
[6] | WEI Zongchen, XI Yuewei, WENG Yunxuan. Research Progress in Poly(lactic acid)⁃based Composite Materials for Bone Tissue Engineering [J]. China Plastics, 2021, 35(9): 136-146. |
[7] | TANG Yujing, WANG Yaqiao, NI Jingyue, WANG Conglong, WANG Xiangdong. Effect of Stereoscopic Composite Crystals on Foaming Behavior of PLA [J]. China Plastics, 2021, 35(8): 117-124. |
[8] | FENG Yuhong, YAO Wenqing, SHANG Chaonan, XIE Yanli, ZHANG Mingnan, ZHOU Xueqing, WANG Guizhen, YU Wenhui, DOU Zhifeng. Research Progress in Laws and Inspection Standards of Disposable Plastic Wastes Control [J]. China Plastics, 2021, 35(8): 55-63. |
[9] | LI Yuzhu, YAO Lihui, YE Shiqiang, LYU Guoyong, LIU Panpan, XU Longfei, QIU Dan. Research Progress on Degradation Performance of Biodegradable Materials in Water Environment [J]. China Plastics, 2021, 35(7): 103-114. |
[10] | ZHANG Ting, ZHANG Caili, SONG Xinyu, WENG Yunxuan. Research Progress in Preparation and Applications of PBAT Films [J]. China Plastics, 2021, 35(7): 115-125. |
[11] | DUAN Xuyuan, ZHENG Hongjuan. Research Progress in Modified Poly(lactic acid) Foaming Technology [J]. China Plastics, 2021, 35(7): 134-139. |
[12] | YANG Wenjie, HE Jiawen, ZHU Hanbin, WANG Sisi, LI Xiping. Mechanical Properties and Foaming Behaviors of Graphene⁃reinforced Poly(lactic acid) [J]. China Plastics, 2021, 35(6): 26-32. |
[13] | SUN Dongbao, LU Qin, LU Xinyu, JIA Wangyi, CAO Shang. Study on Interface Modification Methods and Properties of PLA/Rice Husk Powder Composites [J]. China Plastics, 2021, 35(6): 80-84. |
[14] | ZHANG Bo, WANG Xiaofeng, GUO Meng, BAI Zhiyuan, REN Cuihong, HAN Wenjuan, UYAMA Hiroshi, LI Qian. Study on Surface Carboxylation Modification and Cytocompatibility of Poly(Lactic Acid) [J]. China Plastics, 2021, 35(5): 17-23. |
[15] | XU Jiayi. Preparation and Properties of Hypromellose⁃toughened Poly(lactic acid) Composites [J]. China Plastics, 2021, 35(5): 59-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||